
Powerline
Release beta

Sep 17, 2023

Contents

1 Overview 1
1.1 Features . 1
1.2 Screenshots . 2

1.2.1 Vim statusline . 2

2 Installation 3
2.1 Generic requirements . 3
2.2 Pip installation . 4
2.3 Fonts installation . 4

2.3.1 Patched fonts . 4
2.4 Installation on various platforms . 5

2.4.1 Installation on Linux . 5
2.4.2 Installation on OS X . 6

3 Usage 9
3.1 Application-specific requirements . 9

3.1.1 Vim plugin requirements . 9
3.1.2 Shell prompts requirements . 9
3.1.3 WM widgets requirements . 9
3.1.4 Terminal emulator requirements . 9

3.2 Plugins . 10
3.2.1 Shell prompts . 10
3.2.2 Window manager widgets . 12
3.2.3 Other plugins . 15

4 Configuration and customization 19
4.1 Quick setup guide . 20
4.2 References . 21

4.2.1 Configuration reference . 21
4.2.2 Segment reference . 27
4.2.3 Lister reference . 65
4.2.4 Selector functions . 66
4.2.5 Local configuration overrides . 67

5 Developer guide 71
5.1 Writing segments . 71

5.1.1 Segment dictionary . 74

i

5.1.2 Segments layout . 75
5.1.3 Segment information used in various extensions . 75
5.1.4 Segment class . 77
5.1.5 PowerlineLogger class . 77

5.2 Writing listers . 78
5.3 Local themes . 78

5.3.1 Vim local themes . 79
5.3.2 Other local themes . 79

5.4 Creating new powerline extension . 79
5.4.1 Powerline class . 80
5.4.2 Renderer class . 83

5.5 Tips and tricks for powerline developers . 85
5.5.1 Profiling powerline in Vim . 85

6 Troubleshooting 87
6.1 System-specific issues . 87

6.1.1 Troubleshooting on Linux . 87
6.1.2 Troubleshooting on OS X . 88

6.2 Common issues . 89
6.2.1 After an update something stopped working . 89

6.3 Tmux/screen-related issues . 91
6.3.1 I’m using tmux and Powerline looks like crap, what’s wrong? 91
6.3.2 I’m using tmux/screen and Powerline is colorless . 91
6.3.3 In tmux there is a green bar in place of powerline . 91

6.4 Shell issues . 91
6.4.1 Pipe status segment displays only last value in bash . 91
6.4.2 Bash prompt stopped updating . 92
6.4.3 Bash prompt does not show last exit code . 92
6.4.4 When sourcing shell bindings it complains about missing command or file 92
6.4.5 I am suffering bad lags before displaying shell prompt . 92
6.4.6 Prompt is spoiled after completing files in ksh . 92
6.4.7 When using z powerline shows wrong number of jobs . 93
6.4.8 When using shell I do not see powerline fancy characters 93
6.4.9 Urxvt unicode3 and frills . 93

6.5 Vim issues . 93
6.5.1 My vim statusline has strange characters like ^B in it! . 93
6.5.2 My vim statusline has a lot of ^ or underline characters in it! 93
6.5.3 My vim statusline is hidden/only appears in split windows! 93
6.5.4 My vim statusline is not displayed completely and has too much spaces 94
6.5.5 Powerline loses color after editing vimrc . 94
6.5.6 Powerline loses color after saving any file . 94

7 Tips and tricks 95
7.1 Vim . 95

7.1.1 Useful settings . 95
7.2 VS-Code . 95

7.2.1 Useful settings . 95
7.3 Rxvt-unicode . 95

7.3.1 Terminus font and urxvt . 95
7.3.2 Source Code Pro font and urxvt . 96

7.4 Reloading powerline after update . 96

8 License and credits 97
8.1 Authors . 97

ii

8.2 Contributors . 97

9 Powerline shell commands’ manual pages 99
9.1 powerline-config manual page . 99

9.1.1 Synopsis . 99
9.1.2 Description . 99
9.1.3 Author . 100
9.1.4 Reporting bugs . 100
9.1.5 See also . 100

9.2 powerline-daemon manual page . 100
9.2.1 Synopsis . 100
9.2.2 Description . 100
9.2.3 Author . 101
9.2.4 Reporting bugs . 101
9.2.5 See also . 101

9.3 powerline-lint manual page . 101
9.3.1 Synopsis . 101
9.3.2 Description . 101
9.3.3 Author . 101
9.3.4 Reporting bugs . 101
9.3.5 See also . 101

9.4 powerline manual page . 102
9.4.1 Synopsis . 102
9.4.2 Description . 102
9.4.3 Author . 103
9.4.4 Reporting bugs . 103
9.4.5 See also . 103

10 Indices and tables 105

Python Module Index 107

Index 109

iii

iv

CHAPTER 1

Overview

Powerline is a statusline plugin for vim, and provides statuslines and prompts for several other applications,
including zsh, bash, tmux, IPython, Awesome, i3 and Qtile.

1.1 Features

• Extensible and feature rich, written in Python. Powerline was completely rewritten in Python to get rid of
as much vimscript as possible. This has allowed much better extensibility, leaner and better config files, and a
structured, object-oriented codebase with no mandatory third-party dependencies other than a Python interpreter.

• Stable and testable code base. Using Python has allowed unit testing of all the project code. The code is tested
to work in Python 2.6+ and Python 3.

• Support for prompts and statuslines in many applications. Originally created exclusively for vim statuslines,
the project has evolved to provide statuslines in tmux and several WMs, and prompts for shells like bash/zsh and
other applications. It’s simple to write renderers for any other applications that Powerline doesn’t yet support.

• Configuration and colorschemes written in JSON. JSON is a standardized, simple and easy to use file format
that allows for easy user configuration across all of Powerline’s supported applications.

• Fast and lightweight, with daemon support for even better performance. Although the code base spans a
couple of thousand lines of code with no goal of “less than X lines of code”, the main focus is on good perfor-
mance and as little code as possible while still providing a rich set of features. The new daemon also ensures
that only one Python instance is launched for prompts and statuslines, which provides excellent performance.

But I hate Python / I don’t need shell prompts / this is just too much hassle for me / what happened to the original
vim-powerline project / . . .

You should check out some of the Powerline derivatives. The most lightweight and feature-rich alternative is currently
the vim-airline1 project.

1 https://github.com/vim-airline/vim-airline

1

https://github.com/vim-airline/vim-airline

Powerline, Release beta

1.2 Screenshots

1.2.1 Vim statusline

Mode-dependent highlighting

•

•

•

•

Automatic truncation of segments in small windows

•

•

•

2 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Generic requirements

• Python 3.5 or later, PyPy3 2.3 or later. It is the only non-optional requirement.

• C compiler. Required to build powerline client on linux. If it is not present then powerline will fall back to shell
script or python client.

• socat program. Required for shell variant of client which runs a bit faster than python version of the client,
but still slower than C version.

• psutil python package. Required for some segments like cpu_percent. Some segments have linux-only
fallbacks for psutil functionality.

• hglib python package and mercurial executable. Required to work with mercurial repositories.

• pygit2 python package or git executable. Required to work with git repositories.

• bzr python package (note: not standalone executable). Required to work with bazaar repositories.

• pyuv python package. Required for libuv-based watcher to work.

• i3ipc python package. Required for i3wm bindings and segments.

• xlib python package. Required for the multi-monitor lemonbar binding and the powerline.listers.
i3wm.output_lister(). As an inferior alternative, the xrandr program can be used instead.

• iwlib python package. Required for the wireless segment to display information about the current connection.

• pyalsaaudio python package. Required for the volume segment.

Note: Until bazaar supports Python-3 or PyPy powerline will not support repository information when running in
these interpreters.

Note: When using pip, the {repository_root} directory referenced in documentation may be found
using pip show powerline-status. In the output of pip show there is a line like Location:

3

Powerline, Release beta

{path}, that {path} is {repository_root}. Unless it is --editable installation this is only applica-
ble for {repository_root}/powerline/... paths: something like {repository_root}/scripts/
powerline-render is not present.

When using other packages referenced paths may not exist, in this case refer to package documentation.

2.2 Pip installation

Due to a naming conflict with an unrelated project, powerline is available on PyPI under the powerline-status
name:

pip install powerline-status

is the preferred method because this will get the latest release. To get current development version

pip install --user git+https://github.com/powerline/powerline

may be used. If powerline was already checked out into some directory

pip install --user --editable={path_to_powerline}

is useful, but note that in this case pip will not install powerline executable and something like

ln -s {path_to_powerline}/scripts/powerline ~/.local/bin

will have to be done (~/.local/bin should be replaced with some path present in $PATH).

We can use either https``(``git+ssh://git@github.com/powerline/powerline) or
https``(``git+https://github.com/powerline/powerline) protocols. git protocol is dep-
recated by Github.

2.3 Fonts installation

Powerline uses several special glyphs to get the arrow effect and some custom symbols for developers. This requires
having either a symbol font or a patched font installed in the system. The used application (e.g. terminal emulator)
must also either be configured to use patched fonts (in some cases even support it because custom glyphs live in private
use area which some applications reserve for themselves) or support fontconfig for powerline to work properly with
powerline-specific glyphs.

24-bit color support may be enabled if used terminal emulator supports it (see the terminal emulator support matrix).

There are basically two ways to get powerline glyphs displayed: use PowerlineSymbols.otf font as a fallback
for one of the existing fonts or install a patched font.

2.3.1 Patched fonts

This method is the fallback method and works for every terminal.

Download the font from powerline-fonts2. If preferred font can’t be found in the powerline-fonts3 repo, then patching
the preferred font is needed instead.

2 https://github.com/powerline/fonts
3 https://github.com/powerline/fonts

4 Chapter 2. Installation

https://github.com/powerline/fonts
https://github.com/powerline/fonts

Powerline, Release beta

After downloading this font refer to platform-specific instructions.

2.4 Installation on various platforms

2.4.1 Installation on Linux

The following distribution-specific packages are officially supported, and they provide an easy way of installing and
upgrading Powerline. The packages will automatically do most of the configuration.

• Arch Linux (AUR), Python 2 version4

• Arch Linux (AUR), Python 3 version5

• Gentoo Live ebuild in raiagent6 overlay

• Powerline package is available for Debian starting from Wheezy (via backports7). Use search8 to get more
information.

If used distribution does not have an official package installation guide below should be followed:

1. Install Python 3.2+, Python 2.6+ or PyPy and pip with setuptools. This step is distribution-specific, so no
commands provided.

2. Install Powerline using one of the following commands:

pip install --user powerline-status

will get the latest release version and

pip install --user git+https://github.com/powerline/powerline

will get the latest development version.

Note: Due to the naming conflict with an unrelated project powerline is named powerline-status in
PyPI.

Note: Powerline developers should be aware that‘‘pip install –editable‘‘ does not currently fully work. Instal-
lation performed this way are missing powerline executable that needs to be symlinked. It will be located in
scripts/powerline.

Fonts installation

Fontconfig

This method only works on Linux. It’s the second recommended method if terminal emulator supports it as patching
fonts is not needed, and it generally works with any coding font.

1. Download the latest version of the symbol font and fontconfig file:
4 https://aur.archlinux.org/packages/python2-powerline-git/
5 https://aur.archlinux.org/packages/python-powerline-git/
6 https://github.com/leycec/raiagent
7 https://packages.debian.org/wheezy-backports/powerline
8 https://packages.debian.org/search?keywords=powerline&searchon=names&suite=all§ion=all

2.4. Installation on various platforms 5

https://aur.archlinux.org/packages/python2-powerline-git/
https://aur.archlinux.org/packages/python-powerline-git/
https://github.com/leycec/raiagent
https://packages.debian.org/wheezy-backports/powerline
https://packages.debian.org/search?keywords=powerline&searchon=names&suite=all§ion=all

Powerline, Release beta

wget https://github.com/powerline/powerline/raw/develop/font/PowerlineSymbols.otf
wget https://github.com/powerline/powerline/raw/develop/font/10-powerline-symbols.
→˓conf

2. Move the symbol font to a valid X font path. Valid font paths can be listed with xset q:

mv PowerlineSymbols.otf ~/.local/share/fonts/

3. Update font cache for the path the font was moved to (root privileges may be needed to update cache for the
system-wide paths):

fc-cache -vf ~/.local/share/fonts/

4. Install the fontconfig file. For newer versions of fontconfig the config path is ~/.config/fontconfig/
conf.d/, for older versions it’s ~/.fonts.conf.d/:

mv 10-powerline-symbols.conf ~/.config/fontconfig/conf.d/

If custom symbols still cannot be seen then try closing all instances of the terminal emulator. Restarting X may be
needed for the changes to take effect.

If custom symbols still can’t be seen, double-check that the font have been installed to a valid X font path, and that the
fontconfig file was installed to a valid fontconfig path. Alternatively try to install a patched font.

Patched font installation

This is the preferred method, but it is not always available because not all fonts were patched and not all fonts can be
patched due to licensing issues.

After downloading font the following should be done:

1. Move the patched font to a valid X font path. Valid font paths can be listed with xset q:

mv 'SomeFont for Powerline.otf' ~/.local/share/fonts/

2. Update font cache for the path the font was moved to (root privileges may be needed for updating font cache for
some paths):

fc-cache -vf ~/.local/share/fonts/

After installing patched font terminal emulator, GVim or whatever application powerline should work with must be
configured to use the patched font. The correct font usually ends with for Powerline.

If custom symbols cannot be seen then try closing all instances of the terminal emulator. X server may need to be
restarted for the changes to take effect.

If custom symbols still can’t be seen then double-check that the font have been installed to a valid X font path.

2.4.2 Installation on OS X

Python package

1. Install a proper Python version (see issue #399 for a discussion regarding the required Python version on OS X):
9 https://github.com/powerline/powerline/issues/39

6 Chapter 2. Installation

https://github.com/powerline/powerline/issues/39

Powerline, Release beta

sudo port select python python27-apple

Homebrew may be used here:

brew install python

Note: There are three variants of the powerline client. The fastest is written in C and will be compiled if the
compiler and libraries are detected during installation. The second fastest option is powerline.sh which
requires socat and coreutils. coreutils may be installed using brew install coreutils. If
neither of these are viable, then Powerline will utilize a fallback client written in Python.

2. Install Powerline using one of the following commands:

pip install --user powerline-status

will get current release version and

pip install --user git+https://github.com/powerline/powerline

will get latest development version.

Warning: When using brew install to install Python one must not supply --user flag to pip.

Note: Due to the naming conflict with an unrelated project powerline is named powerline-status in
PyPI.

Note: Powerline developers should be aware that pip install --editable does not currently fully
work. Installation performed this way are missing powerline executable that needs to be symlinked. It will
be located in scripts/powerline.

Vim installation

Any terminal vim version with Python 3.2+ or Python 2.6+ support should work, but MacVim users need to install it
using the following command:

brew install macvim --env-std --with-override-system-vim

Fonts installation

To install patched font double-click the font file in Finder, then click Install this font in the preview window.

After installing the patched font MacVim or terminal emulator (whatever application powerline should work with)
need to be configured to use the patched font. The correct font usually ends with for Powerline.

2.4. Installation on various platforms 7

Powerline, Release beta

8 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Application-specific requirements

3.1.1 Vim plugin requirements

The vim plugin requires a vim version with Python support compiled in. Presence of Python support in Vim can be
checked by running vim --version | grep +python.

If Python support is absent then Vim needs to be compiled with it. To do this use --enable-pythoninterp
./configure flag (Python 3 uses --enable-python3interp flag instead). Note that this also requires the
related Python headers to be installed. Please consult distribution’s documentation for details on how to compile and
install packages.

Vim version 7.4 or newer is recommended for performance reasons, but Powerline supports Vim 7.0.112 and higher.

3.1.2 Shell prompts requirements

Due to fish having incorrect code for prompt width calculations up to version 2.1 and no way to tell that certain
sequence of characters has no width (%{...%} in zsh and \[...\] in bash prompts serve exactly this purpose)
users that have fish versions below 2.1 are not supported..

3.1.3 WM widgets requirements

Awesome is supported starting from version 3.5.1, inclusive. QTile is supported from version 0.6, inclusive.

3.1.4 Terminal emulator requirements

Powerline uses several special glyphs to get the arrow effect and some custom symbols for developers. This requires
either a symbol font or a patched font installed. Used terminal emulator must also support either patched fonts or
fontconfig for Powerline to work properly.

9

Powerline, Release beta

24-bit color support can also be enabled if terminal emulator supports it.

Table 1: Application/terminal emulator feature support matrix
Name OS Patched font support Fontconfig support 24-bit color support

Gvim Linux

iTerm2 OS X

Konsole Linux

lxterminal Linux

MacVim OS X

rxvt-unicode Linux 10

st Linux 11

Terminal.app OS X

libvte-based12 Linux 13

xterm Linux 14

fbterm Linux

3.2 Plugins

3.2.1 Shell prompts

Note: Powerline can operate without a background daemon, but the shell performance can be very slow. The
Powerline daemon improves this performance significantly, but must be started separately. It is advised to add

powerline-daemon -q

before any other powerline-related code in the shell configuration file.

Bash prompt

Add the following line to the bashrc, where {repository_root} is the absolute path to the Powerline installa-
tion directory (see repository root):

. {repository_root}/powerline/bindings/bash/powerline.sh

Note: Since without powerline daemon bash bindings are very slow PS2 (continuation) and PS3 (select) prompts are
not set up. Thus it is advised to use

10 Must be compiled with --enable-unicode3 for the patched font to work.
11 Since version 0.5.
12 Including XFCE terminal and GNOME terminal.
13 Since version 0.36.
14 Uses nearest color from 8-bit palette.

10 Chapter 3. Usage

Powerline, Release beta

powerline-daemon -q
POWERLINE_BASH_CONTINUATION=1
POWERLINE_BASH_SELECT=1
. {repository_root}/powerline/bindings/bash/powerline.sh

in the bash configuration file. Without POWERLINE_BASH_* variables PS2 and PS3 prompts are computed exactly
once at bash startup.

Warning: At maximum bash continuation PS2 and select PS3 prompts are computed each time main PS1 prompt
is computed. Thus putting e.g. current time into PS2 or PS3 prompt will not work as expected.

At minimum they are computed once on startup.

Zsh prompt

Add the following line to the zshrc, where {repository_root} is the absolute path to the Powerline installation
directory (see repository root):

. {repository_root}/powerline/bindings/zsh/powerline.zsh

Fish prompt

Add the following line to config.fish, where {repository_root} is the absolute path to the Powerline
installation directory (see repository root):

set fish_function_path $fish_function_path "{repository_root}/powerline/bindings/fish"
powerline-setup

Warning: Fish is supported only starting from version 2.1.

Rcsh prompt

Powerline supports Plan9 rc reimplementation by Byron Rakitzis packaged by many *nix distributions. To use it add

. {repository_root}/powerline/bindings/rc/powerline.rc

({repository_root} is the absolute path to the Powerline installation directory, see repository root) to rcrc file
(usually ~/.rcrc) and make sure rc is started as a login shell (with -l argument): otherwise this configuration file
is not read.

Warning: Original Plan9 shell and its *nix port are not supported because they are missing prompt special
function (it is being called once before each non-continuation prompt). Since powerline could not support shell
without this or equivalent feature some other not-so-critical features of that port were used.

3.2. Plugins 11

Powerline, Release beta

Busybox (ash), mksh and dash prompt

After launching busybox run the following command:

. {repository_root}/powerline/bindings/shell/powerline.sh

where {repository_root} is the absolute path to the Powerline installation directory (see repository root).

Mksh users may put this line into ~/.mkshrc file. Dash users may use the following in ~/.profile:

if test "$0" != "${0#dash}" ; then
export ENV={repository_root}/powerline/bindings/shell/powerline.sh

fi

Note: Dash users that already have $ENV defined should either put the/shell/powerline.sh line in
the $ENV file or create a new file which will source (using . command) both former $ENV file and powerline.sh
files and set $ENV to the path of this new file.

Warning: Mksh users have to set $POWERLINE_SHELL_CONTINUATION and
$POWERLINE_SHELL_SELECT to 1 to get PS2 and PS3 (continuation and select) prompts support re-
spectively: as command substitution is not performed in these shells for these prompts they are updated once each
time PS1 prompt is displayed which may be slow.

It is also known that while PS2 and PS3 update is triggered at PS1 update it is actually performed only next time
PS1 is displayed which means that PS2 and PS3 prompts will be outdated and may be incorrect for this reason.

Without these variables PS2 and PS3 prompts will be set once at startup. This only touches mksh users: busybox
and dash both have no such problem.

Warning: Job count is using some weird hack that uses signals and temporary files for interprocess communica-
tion. It may be wrong sometimes. Not the case in mksh.

Warning: Busybox has two shells: ash and hush. Second is known to segfault in busybox 1.22.1 when using
powerline.sh script.

Python Virtual Environments (conda, pyenv)

If your system uses virtual environments to manage different Python versions, such as pyenv or anaconda, these tools
will add a performance delay to every shell prompt. This delay can be bypassed by explicitly specifying your command
path.

export POWERLINE_COMMAND={path_to_powerline}

where {path_to_powerline} is the full filepath for powerline. If you installed Powerline within an environment,
you can find this path for pyenv with pyenv which powerline or for conda with which powerline.

3.2.2 Window manager widgets

12 Chapter 3. Usage

Powerline, Release beta

Awesome widget

Note: Powerline currently only supports awesome 3.5 and 4+.

Note: The Powerline widget will spawn a shell script that runs in the background and updates the statusline with
awesome-client.

Add the following to rc.lua, where {repository_root} is the absolute path to Powerline installation directory
(see repository root):

package.path = package.path .. ';{repository_root}/powerline/bindings/awesome/?.lua'
require('powerline')

Then add the powerline_widget to wibox:

-- awesome3.5
right_layout:add(powerline_widget)

-- awesome4+
s.mywibox:setup {
...

{ -- Right widgets
...
powerline_widget,

},
}

Qtile widget

Add the following to ~/.config/qtile/config.py:

from libqtile.bar import Bar
from libqtile.config import Screen
from libqtile.widget import Spacer

from powerline.bindings.qtile.widget import PowerlineTextBox

screens = [
Screen(

top=Bar([
PowerlineTextBox(update_interval=2, side='left'),
Spacer(),
PowerlineTextBox(update_interval=2, side='right'),

],
35 # width

),
),

]

lemonbar (formerly bar-aint-recursive)

To run the bar simply start the binding script:

3.2. Plugins 13

Powerline, Release beta

powerline-lemonbar

You can specify options to be passed to lemonbar after --, like so:

powerline-lemonbar --height 16 -- -a 40 -f 'DejaVu Sans Mono-11' -f 'PowerlineSymbols-
→˓12' -f 'FontAwesome-11'"

Note that, if you don’t specify any options, powerline-lemonbar will default to the above.

To run with i3, simply exec this in the i3 config file:

exec powerline-lemonbar

Running the binding in i3-mode will require i3ipc15.

See the lemonbar documentation16 for more information and options.

To enhance the global menu, add the following to your .bashrc:

if [-n "$GTK_MODULES"]; then
GTK_MODULES="${GTK_MODULES}:appmenu-gtk-module"

else
GTK_MODULES="appmenu-gtk-module"

fi

if [-z "$UBUNTU_MENUPROXY"]; then
UBUNTU_MENUPROXY=1

fi

export GTK_MODULES
export UBUNTU_MENUPROXY

Further, add the following line to your i3 config

exec --no-startup-id powerline-globmenu

All powerline-lemonbar arguments:

powerline-lemonbar [--i3] [--no_i3] [--use_defaults] [--clicks]
[--no_clicks] [--alt_output] [--height=PIXELS]
[--correction=C] [--relative_height]
[--interval=SECONDS] [--bar_command=CMD]
[--] [ARGS]...

–i3 Unused.

–no_i3 Don’t Subscribe for i3 events.

–use_defaults, -d Do also supply the bar with the default extra arguments.

–clicks Unused.

–no_clicks Don’t redirect lemonbar output to /bin/sh

–alt_output, -o Use alternative output detection

–height, -H PIXELS Bar height. Defaults to 18.

15 https://github.com/acrisci/i3ipc-python
16 https://github.com/LemonBoy/bar

14 Chapter 3. Usage

https://github.com/acrisci/i3ipc-python
https://github.com/LemonBoy/bar

Powerline, Release beta

–correction, -c C Correction factor for default font sizes.

–relative_height, -R Interpret the given height as relative height in percent.

–interval, -i SECONDS Refresh interval.

–bar_command, -C CMD Name of the lemonbar executable to use.

ARGS Extra arguments for lemonbar. Should be preceded with -- argument in order not to be confused with script
own arguments. Defaults to -a 40 -b -f ‘DejaVu Sans Mono-{height*.6}’ -f ‘PowerlineSymbols-{height*.75}’
-f ‘FontAwesome-{height*.65}’.

-h, –help Display help and exit.

3.2.3 Other plugins

Vim statusline

If installed using pip just add

python from powerline.vim import setup as powerline_setup
python powerline_setup()
python del powerline_setup

(replace python with python3 if appropriate) to the vimrc.

Note: Status line will not appear by default when there is only a single window displayed. Run :h 'laststatus'
in Vim for more information.

If the repository was just cloned the following line needs to be added to the vimrc:

set rtp+={repository_root}/powerline/bindings/vim

where {repository_root} is the absolute path to the Powerline installation directory (see repository root).

If pathogen is used and Powerline functionality is not needed outside of Vim then it is possible to simply add Powerline
as a bundle and point the path above to the Powerline bundle directory, e.g. ~/.vim/bundle/powerline/
powerline/bindings/vim.

Vundle and NeoBundle users may instead use

Bundle 'powerline/powerline', {'rtp': 'powerline/bindings/vim/'}

(NeoBundle users need NeoBundle in place of Bundle, otherwise setup is the same).

Vim-addon-manager setup is even easier because it is not needed to write this big path or install anything by hand:
powerline can be installed and activated just like any other plugin using

call vam#ActivateAddons(['powerline'])

Warning: Never install powerline with pathogen/VAM/Vundle/NeoBundle and with pip. If powerline func-
tionality is needed in applications other then Vim then system-wide installation (in case used OS distribution has
powerline package), pip-only or pip install --editable kind of installation performed on the repository
installed by Vim plugin manager should be used.

3.2. Plugins 15

Powerline, Release beta

No issues are accepted in powerline issue tracker for double pip/non-pip installations, especially if these issues
occur after update.

Note: If supplied powerline.vim file is used to load powerline there are additional configuration variables
available: g:powerline_pycmd and g:powerline_pyeval. First sets command used to load powerline:
expected values are "py" and "py3". Second sets function used in statusline, expected values are "pyeval"
and "py3eval".

If g:powerline_pycmd is set to the one of the expected values then g:powerline_pyeval will be set accord-
ingly. If it is set to some other value then g:powerline_pyeval must also be set. Powerline will not check that
Vim is compiled with Python support if g:powerline_pycmd is set to an unexpected value.

These values are to be used to specify the only Python that is to be loaded if both versions are present: Vim may
disable loading one python version if other was already loaded. They should also be used if two python versions are
able to load simultaneously, but powerline was installed only for python-3 version.

Tmux statusline

Add the following lines to .tmux.conf, where {repository_root} is the absolute path to the Powerline
installation directory (see repository root):

source "{repository_root}/powerline/bindings/tmux/powerline.conf"

Note: The availability of the powerline-config command is required for powerline support. The location of
this script may be specified via the $POWERLINE_CONFIG_COMMAND environment variable.

Note: It is advised to run powerline-daemon before adding the above line to tmux.conf. To do so add:

run-shell "powerline-daemon -q"

to .tmux.conf.

Warning: Segments which depend on current working directory (e.g. powerline.segments.common.
vcs.branch()) require also setting up shell bindings. It is not required to use powerline shell prompt, compo-
nents setting allows to set up only powerline bindings for tmux without altering your prompt. Without setting up
shell bindings powerline will use current working directory of tmux server which is probably not what you need.

Segments which depend on environment like powerline.segments.common.env.virtualenv() will
not work at all (i.e. they will use environment of the tmux server), tracking environment changes is going to slow
down shell a lot.

In any case it is suggested to avoid both kinds of segments in tmux themes because even support for tracking
current directory is very limited:

1. It works only in shell. Should you e.g. run Vim and run :cd there you will get current working directory
from shell.

2. It works only in local shell and requires configuring it.

16 Chapter 3. Usage

Powerline, Release beta

3. Some shells are not supported at all.

IPython prompt

For IPython>=7.0, add the following line to ~/.ipython/profile_default/ipython_config.py file in
the used profile:

from powerline.bindings.ipython.since_7 import PowerlinePrompts
c.TerminalInteractiveShell.prompts_class = PowerlinePrompts

Note: If certain graphical/colored elements are not showing, make sure c.TerminalInteractiveShell.simple_prompt
is set to False in your config. Setting simple_prompt to False after IPython-5.0 is required regardless of
whether you use c.InteractiveShellApp.extensions setting or c.TerminalInteractiveShell.
prompts_class. But you probably already have this line because simple_prompt is set to False by default
and IPython is not very useful without it.

For IPython>=5.0 and <7.0 it is suggested to use

from powerline.bindings.ipython.since_5 import PowerlinePrompts
c = get_config()
c.TerminalInteractiveShell.simple_prompt = False
c.TerminalInteractiveShell.prompts_class = PowerlinePrompts

For IPython>=5.0 and <7.0 you may use the below set up, but it is deprecated. For IPython>=0.11 add the following
line to ~/.ipython/profile_default/ipython_config.py file in the used profile:

c = get_config()
c.InteractiveShellApp.extensions = [

'powerline.bindings.ipython.post_0_11'
]

For IPython<0.11 add the following lines to .ipython/ipy_user_conf.py:

top
from powerline.bindings.ipython.pre_0_11 import setup as powerline_setup

main() function (assuming ipython was launched without configuration to
create skeleton ipy_user_conf.py file):
powerline_setup()

IPython=0.11* is not supported and does not work. IPython<0.10 was not tested (not installable by pip).

PDB prompt

To use Powerline with PDB prompt you need to use custom class. Inherit your class from pdb.Pdb and decorate it
with powerline.bindings.pdb.use_powerline_prompt():

import pdb

from powerline.bindings.pdb import use_powerline_prompt

(continues on next page)

3.2. Plugins 17

Powerline, Release beta

(continued from previous page)

@use_powerline_prompt
class MyPdb(pdb.Pdb):

pass

MyPdb.run('some.code.to.debug()')

. Alternatively you may use

python -mpowerline.bindings.pdb path/to/script.py

just like you used python -m pdb.

18 Chapter 3. Usage

CHAPTER 4

Configuration and customization

Note: Forking the main GitHub repo is not needed to personalize Powerline configuration! Please read through
the Quick setup guide for a quick introduction to user configuration.

Powerline is configured with one main configuration file, and with separate configuration files for themes and col-
orschemes. All configuration files are written in JSON, with the exception of segment definitions, which are written
in Python.

Powerline provides default configurations in the following locations:

Main configuration powerline/config.json

Colorschemes powerline/colorschemes/name.json, powerline/colorschemes/extension/
__main__.json, powerline/colorschemes/extension/name.json

Themes powerline/themes/top_theme.json, powerline/themes/extension/__main__.
json, powerline/themes/extension/default.json

Here {powerline} is one of the following:

1. The default configuration directory located in the main package: powerline_root/powerline/
config_files. May be absent in some packages (e.g. when installing via Gentoo ebuilds).

2. If variable $XDG_CONFIG_DIRS is set and non-empty then to any directory/powerline where {direc-
tory} is a directory listed in a colon-separated $XDG_CONFIG_DIRS list. Directories are checked in reverse
order.

3. User configuration directory located in $XDG_CONFIG_HOME/powerline. This usually corresponds to ~/
.config/powerline on all platforms.

If per-instance configuration is needed please refer to Local configuration overrides.

Note: Existing multiple configuration files that have the same name, but are placed in different directories, will be
merged. Merging happens in the order given in the above list of possible {powerline} meanings.

19

Powerline, Release beta

When merging configuration only dictionaries are merged and they are merged recursively: keys from next file overrule
those from the previous unless corresponding values are both dictionaries in which case these dictionaries are merged
and key is assigned the result of the merge.

Note: Some configuration files (i.e. themes and colorschemes) have two level of merging: first happens merging
described above, second theme- or colorscheme-specific merging happens.

4.1 Quick setup guide

This guide will help you with the initial configuration of Powerline.

Look at configuration in powerline_root/powerline/config_files. If you want to modify some file you
can create ~/.config/powerline directory and put modifications there: all configuration files are merged with
each other.

Each extension (vim, tmux, etc.) has its own theme, and they are located in config directory/themes/
extension/default.json. Best way to modify it is to copy this theme as a whole, remove segment_data
key with corresponding value if present (unless you need to modify it, in which case only modifications must be left)
and do necessary modifications in the list of segments (lists are not subject to merging: this is why you need a copy).

If you want to move, remove or customize any of the provided segments in the copy, you can do that by updating the
segment dictionary in the theme you want to customize. A segment dictionary looks like this:

{
"name": "segment_name"
...

}

You can move the segment dictionaries around to change the segment positions, or remove the entire dictionary to
remove the segment from the prompt or statusline.

Note: It’s essential that the contents of all your configuration files is valid JSON! It’s strongly recommended that you
run your configuration files through jsonlint after changing them.

Note: If your modifications appear not to work, run powerline-lint script. This script should show you the location
of the error.

Some segments need a user configuration to work properly. Here’s a couple of segments that you may want to
customize right away:

E-mail alert segment You have to set your username and password (and possibly server/port) for the e-mail alert
segment. If you’re using GMail it’s recommended that you generate an application-specific password17 for this
purpose.

Open a theme file, scroll down to the email_imap_alert segment and set your username and password.
The server defaults to GMail’s IMAP server, but you can set the server/port by adding a server and a port
argument.

17 https://accounts.google.com/IssuedAuthSubTokens

20 Chapter 4. Configuration and customization

https://accounts.google.com/IssuedAuthSubTokens

Powerline, Release beta

Weather segment The weather segment will try to find your location using a GeoIP lookup, so unless you’re on a
VPN you probably won’t have to change the location query.

It is using OpenWeatherMap as a provider, which can be configured with a personal API key. These can be
generated here18

If you want to change the location query or the temperature unit you’ll have to update the segment arguments.
Open a theme file, scroll down to the weather segment and update it to include unit, location query or api key
arguments:

{
"name": "weather",
"priority": 50,
"args": {

"unit": "F",
"location_query": "oslo, norway",
"weather_api_key": "your_api_key"

}
},

4.2 References

4.2.1 Configuration reference

Main configuration

Location powerline/config.json

The main configuration file defines some common options that applies to all extensions, as well as some extension-
specific options like themes and colorschemes.

Common configuration

Common configuration is a subdictionary that is a value of common key in powerline/config.json file.

term_truecolor Defines whether to output cterm indices (8-bit) or RGB colors (24-bit) to the terminal emulator.
See the Application/terminal emulator feature support matrix for information on whether used terminal emulator
supports 24-bit colors.

This variable is forced to be false if term_escape_style option is set to "fbterm" or if it is set to "auto"
and powerline detected fbterm.

term_escape_style Defines what escapes sequences should be used. Accepts three variants:

Vari-
ant

Description

auto xterm or fbterm depending on $TERM variable value: TERM=fbterm implies fbterm escap-
ing style, all other values select xterm escaping.

xterm Uses \e[{fb};5;{color}m for colors ({fb} is either 38 (foreground) or 48 (background)).
Should be used for most terminals.

fbterm Uses \e[{fb};{color}} for colors ({fb} is either 1 (foreground) or 2 (background)). Should
be used for fbterm: framebuffer terminal.

18 https://home.openweathermap.org/api_keys

4.2. References 21

https://home.openweathermap.org/api_keys

Powerline, Release beta

ambiwidth Tells powerline what to do with characters with East Asian Width Class Ambiguous (such as Euro,
Registered Sign, Copyright Sign, Greek letters, Cyrillic letters). Valid values: any positive integer; it is suggested
that this option is only set it to 1 (default) or 2.

watcher Select filesystem watcher. Variants are

Variant Description
auto Selects most performant watcher.
inotify Select inotify watcher. Linux only.
stat Select stat-based polling watcher.
uv Select libuv-based watcher.

Default is auto.

additional_escapes Valid for shell extensions, makes sense only if term_truecolor is enabled. Is to be set
from command-line. Controls additional escaping that is needed for tmux/screen to work with terminal true
color escape codes: normally tmux/screen prevent terminal emulator from receiving these control codes thus
rendering powerline prompt colorless. Valid values: "tmux", "screen", null (default).

paths Defines additional paths which will be searched for modules when using function segment option or Vim
local_themes option. Paths defined here have priority when searching for modules.

log_file Defines how logs will be handled. There are three variants here:

1. Absent. In this case logging will be done to stderr: equivalent to [["logging.StreamHandler",
[]]] or [null].

2. Plain string. In this case logging will be done to the given file: "/file/name" is equivalent to
[["logging.FileHandler", [["/file/name"]]]] or ["/file/name"]. Leading ~/ is
expanded in the file name, so using "~/.log/foo" is permitted. If directory pointed by the option is
absent, it will be created, but not its parent.

3. List of handler definitions. Handler definition may either be null, a string or a list with two or three
elements:

1. Logging class name and module. If module name is absent, it is equivalent to logging.handlers.

2. Class constructor arguments in a form [[args[, kwargs]]]: accepted variants are [] (no argu-
ments), [args] (e.g. [["/file/name"]]: only positional arguments) or [args, kwargs]
(e.g. [[], {"host": "localhost", "port": 6666}]: positional and keyword argu-
ments, but no positional arguments in the example).

3. Optional logging level. Overrides log_level key and has the same format.

4. Optional format string. Partially overrides log_format key and has the same format. “Partially” here
means that it may only specify more critical level.

log_level String, determines logging level. Defaults to WARNING.

log_format String, determines format of the log messages. Defaults to
'%(asctime)s:%(level)s:%(message)s'.

interval Number, determines time (in seconds) between checks for changed configuration. Checks are done in a
separate thread. Use null to check for configuration changes on .render() call in main thread. Defaults to
None.

reload_config Boolean, determines whether configuration should be reloaded at all. Defaults to True.

default_top_theme String, determines which top-level theme will be used as the default. Defaults to
powerline_terminus in unicode locales and ascii in non-unicode locales. See Themes section for more
details.

22 Chapter 4. Configuration and customization

Powerline, Release beta

Extension-specific configuration

Common configuration is a subdictionary that is a value of ext key in powerline/config.json file.

colorscheme Defines the colorscheme used for this extension.

theme Defines the theme used for this extension.

top_theme Defines the top-level theme used for this extension. See Themes section for more details.

local_themes Defines themes used when certain conditions are met, e.g. for buffer-specific statuslines in
vim. Value depends on extension used. For vim it is a dictionary {matcher_name : theme_name},
where matcher_name is either matcher_module.module_attribute or module_attribute
(matcher_module defaults to powerline.matchers.vim) and module_attribute should point
to a function that returns boolean value indicating that current buffer has (not) matched conditions. There is an
exception for matcher_name though: if it is __tabline__ no functions are loaded. This special theme is
used for tabline Vim option.

For shell and ipython it is a simple {prompt_type : theme_name}, where prompt_type is a string
with no special meaning (specifically it does not refer to any Python function). Shell has continuation, and
select prompts with rather self-explanatory names, IPython has in2, out and rewrite prompts (refer to
IPython documentation for more details) while in prompt is the default.

For wm (lemonbar only) it is a dictionary {output : theme_name} that maps the xrandr output names
to the local themes to use on that output.

components Determines which extension components should be enabled. This key is highly extension-specific,
here is the table of extensions and corresponding components:

Exten-
sion

Compo-
nent

Description

vim statusline Makes Vim use powerline statusline.
tabline Makes Vim use powerline tabline.

shell prompt Makes shell display powerline prompt.
tmux Makes shell report its current working directory and screen width to tmux for tmux

powerline bindings.

All components are enabled by default.

update_interval Determines how often WM status bars need to be updated, in seconds. Only valid for WM
extensions which use powerline-daemon. Defaults to 2 seconds.

Color definitions

Location powerline/colors.json

colors Color definitions, consisting of a dict where the key is the name of the color, and the value is one of the
following:

• A cterm color index.

• A list with a cterm color index and a hex color string (e.g. [123, "aabbcc"]). This is useful for
colorschemes that use colors that aren’t available in color terminals.

gradients Gradient definitions, consisting of a dict where the key is the name of the gradient, and the value is a
list containing one or two items, second item is optional:

• A list of cterm color indices.

4.2. References 23

Powerline, Release beta

• A list of hex color strings.

Alternatively, one may specify gradients by a list of hsv triples of simply a list of hex values as strings.

It is expected that gradients are defined from least alert color to most alert or non-alert colors are used. Further,
intermediate color values will be interpolated linearly.

Colorschemes

Location powerline/colorschemes/name.json, powerline/colorschemes/
__main__.json, powerline/colorschemes/extension/name.json

Colorscheme files are processed in order given: definitions from each next file override those from each previous
file. It is required that either powerline/colorschemes/name.json, or powerline/colorschemes/
extension/name.json exists.

name Name of the colorscheme.

groups Segment highlighting groups, consisting of a dict where the key is the name of the highlighting group
(usually the function name for function segments), and the value is either

1) a dict that defines the foreground color, background color and attributes:

fg Foreground color. Must be defined in colors.

bg Background color. Must be defined in colors.

attrs (optional) List of attributes. Valid values are one or more of bold, italic and underline.
Note that some attributes may be unavailable in some applications or terminal emulators. If no at-
tributes are needed this list should be left empty.

click (optional) Dictionary mapping the values left, right, middle, scroll up, scroll
down, hover enter, and hover leave to a string to be executed by a shell. The string to
be executed may contain format string placeholders which will be populated by the corresponding
segment. Available placeholders are listed per segment under click values supplied. Cur-
rently, only lemonbar supports clicks.

2) a string (an alias): a name of existing group. This group’s definition will be used when this color is
requested.

mode_translations Mode-specific highlighting for extensions that support it (e.g. the vim extension). It’s an
easy way of changing a color in a specific mode. Consists of a dict where the key is the mode and the value is a
dict with the following options:

colors A dict where the key is the color to be translated in this mode, and the value is the new color. Both
the key and the value must be defined in colors.

groups Segment highlighting groups for this mode. Same syntax as the main groups option.

Themes

Location powerline/themes/top_theme.json, powerline/themes/extension/
__main__.json, powerline/themes/extension/name.json

Theme files are processed in order given: definitions from each next file override those from each previous file. It is
required that file powerline/themes/extension/name.json exists.

{top_theme} component of the file name is obtained either from top_theme extension-specific key or from de-
fault_top_theme common configuration key. Powerline ships with the following top themes:

24 Chapter 4. Configuration and customization

Powerline, Release beta

Theme Description
powerline Default powerline theme with fancy powerline symbols
powerline_unicode7 Theme with powerline dividers and unicode-7 symbols
unicode Theme without any symbols from private use area
unicode_terminus Theme containing only symbols from terminus PCF font
unicode_terminus_condensed Like above, but occupies as less space as possible
powerline_terminus Like unicode_terminus, but with powerline symbols
ascii Theme without any unicode characters at all

name Name of the theme.

default_module Python module where segments will be looked by default. Defaults to powerline.
segments.{ext}.

spaces Defines number of spaces just before the divider (on the right side) or just after it (on the left side). These
spaces will not be added if divider is not drawn.

use_non_breaking_spaces Determines whether non-breaking spaces should be used in place of the regular
ones. This option is needed because regular spaces are not displayed properly when using powerline with some
font configuration. Defaults to True.

Note: Unlike all other options this one is only checked once at startup using whatever theme is the default. If
this option is set in the local themes it will be ignored. This option may also be ignored in some bindings.

outer_padding Defines number of spaces at the end of output (on the right side) or at the start of output (on the
left side). Defaults to 1.

dividers Defines the dividers used in all Powerline extensions.

The hard dividers are used to divide segments with different background colors, while the soft dividers are
used to divide segments with the same background color.

cursor_space Space reserved for user input in shell bindings. It is measured in per cents.

cursor_columns Space reserved for user input in shell bindings. Unlike cursor_space it is measured in absolute
amount of columns.

segment_data A dict where keys are segment names or strings {module}.{function}. Used to specify
default values for various keys: after, before, contents (only for string segments if name is defined), display.

Key args (only for function and segment_list segments) is handled specially: unlike other values it is merged
with all other values, except that a single {module}.{function} key if found prevents merging all
{function} values.

When using local themes values of these keys are first searched in the segment description, then in
segment_data key of a local theme, then in segment_data key of a default theme. For the default theme
itself step 2 is obviously avoided.

Note: Top-level themes are out of equation here: they are merged before the above merging process happens.

segments A dict with a left and a right lists, consisting of segment dictionaries. Shell themes may also contain
above list of dictionaries. Each item in above list may have left and right keys like this dictionary, but
no above key. Also, some bindings support an additional center list that behaves like left and right.

above list is used for multiline shell configurations.

4.2. References 25

Powerline, Release beta

left, right, and center lists are used for segments that should be put on the left or right side or in the
center in the output. Actual mechanizm of putting segments on the left, the right, or the center depends on used
renderer, but most renderers require one to specify segment with width auto on either side to make generated
line fill all of the available width.

Each segment dictionary has the following options:

type The segment type. Can be one of function (default), string or segment_list:

function The segment contents is the return value of the function defined in the function option.

List of function segments is available in Segment reference section.

string A static string segment where the contents is defined in the contents option, and the highlighting
group is defined in the highlight_groups option.

segment_list Sub-list of segments. This list only allows function, segments and args options.

List of lister segments is available in Lister reference section.

name Segment name. If present allows referring to this segment in segment_data dictionary by this name. If not
string segments may not be referred there at all and function and segment_list segments may
be referred there using either {module}.{function_name} or {function_name}, whichever
will be found first. Function name is taken from function key.

Note: If present prevents function key from acting as a segment name.

function Function used to get segment contents, in format {module}.{function} or {function}.
If {module} is omitted default_module option is used.

highlight_groups Highlighting group for this segment. Consists of a prioritized list of highlighting
groups, where the first highlighting group that is available in the colorscheme is used.

Ignored for segments that have function type.

before A string which will be prepended to the segment contents.

after A string which will be appended to the segment contents.

contents Segment contents, only required for string segments.

args A dict of arguments to be passed to a function segment.

align Aligns the segments contents to the left (l), center (c) or right (r). Has no sense if width key was not
specified or if segment provides its own function for auto width handling and does not care about this
option.

width Enforces a specific width for this segment.

This segment will work as a spacer if the width is set to auto. Several spacers may be used, and the space
will be distributed equally among all the spacer segments. Spacers may have contents, either returned by
a function or a static string, and the contents can be aligned with the align property.

priority Optional segment priority. Segments with priority None (the default priority, represented by null
in json) will always be included, regardless of the width of the prompt/statusline.

If the priority is any number, the segment may be removed if the prompt/statusline width is too small for
all the segments to be rendered. A lower number means that the segment has a higher priority.

Segments are removed according to their priority, with low priority segments (i.e. with a greater priority
number) being removed first.

26 Chapter 4. Configuration and customization

Powerline, Release beta

draw_hard_divider, draw_soft_divider Whether to draw a divider between this and the adjacent
segment. The adjacent segment is to the right for segments on the left side, and vice versa. Hard dividers
are used between segments with different background colors, soft ones are used between segments with
same background. Both options default to True.

draw_inner_divider Determines whether inner soft dividers are to be drawn for function segments. Only
applicable for functions returning multiple segments. Defaults to False.

exclude_modes, include_modes A list of modes where this segment will be excluded: the segment
is not included or is included in all modes, except for the modes in one of these lists respectively. If
exclude_modes is not present then it acts like an empty list (segment is not excluded from any modes).
Without include_modes it acts like a list with all possible modes (segment is included in all modes).
When there are both exclude_modes overrides include_modes.

exclude_function, include_function A dict describing a function and optionally arguments passed
to that function. Determines under which condition specific segment will be included or ex-
cluded. By default segment is always included and never excluded. exclude_function overrides
include_function.

name Function name in a form {name} or {module}.{name} (in the first form {module} defaults
to powerline.selectors.{ext}).

args A dict containing additional arguments passed to the selector function.

Note: Options exclude_/include_modes complement exclude_/include_functions: segment
will be included if it is included by either include_mode or include_function and will be ex-
cluded if it is excluded by either exclude_mode or exclude_function.

Note: If a selector function does not take additional arguments, instead of via a dict, it can be specified
directly via a function name as in the name field.

display Boolean. If false disables displaying of the segment. Defaults to True.

segments A list of subsegments.

4.2.2 Segment reference

Segments are written in Python, and the default segments provided with Powerline are located in powerline/
segments/extension.py. User-defined segments can be defined in any module in sys.path or paths common
configuration option, import is always absolute.

Segments are regular Python functions, and they may accept arguments. All arguments should have a default value
which will be used for themes that don’t provide an args dict.

More information is available in Writing segments section.

Available segments

Common segments

4.2. References 27

Powerline, Release beta

VCS submodule

class powerline.segments.common.vcs.VCSInfoSegment

argspecobjs()
Return a list of valid arguments for inspect.getargspec

Used to determine function arguments.

omitted_args(name, method)
List arguments which should be omitted

Returns a tuple with indexes of omitted arguments.

powerline.segments.common.vcs.vcsinfo(name, ignore_statuses=(), status_colors=False)
Return the current revision info

Parameters

• name (str) – Determines what property should be used. Valid values:

Name Description
branch Current branch name.
short Current commit revision abbreviated hex or revno.
summary Current commit summary.
name Human-readable name of the current revision.
bookmark Current bookmark (mercurial) or branch (otherwise).
status Current repository status.

• status_colors (bool) – Determines whether repository status will be used to deter-
mine highlighting. Default: False.

• ignore_statuses (list) – List of statuses which will not result in repo being marked
as dirty. Most useful is setting this option to ["U"]: this will ignore repository which has
just untracked files (i.e. repository with modified, deleted or removed files will be marked as
dirty, while just untracked files will make segment show clean repository). Only applicable
if status_colors option is True.

Highlight groups used: vcsinfo:clean, vcsinfo:dirty, vcsinfo.

Additionally vcsinfo:{name} is used.

System properties

class powerline.segments.common.sys.CPULoadPercentSegment

powerline.segments.common.sys.cpu_load_percent(interval=1, threshold=None, for-
mat="{0:.0f}%", update_first=True)

Return the average CPU load as a percentage.

Requires the psutil module.

Parameters

• format (str) – Output format. Accepts measured CPU load as the first argument.

• threshold (int) – Minimum load to display the segment (in percent)

28 Chapter 4. Configuration and customization

Powerline, Release beta

Highlight groups used: cpu_load_percent_gradient (gradient) or cpu_load_percent.

Click values supplied: cpu_load (string), cpu_load_raw (int)

powerline.segments.common.sys.memory_usage(auto_shrink=False,
short_format="{percent:.1f}%", thresh-
old_bad=80, threshold_good=20,
format="{percent:.1f}% {abso-
lute:.1f}G/{total:.1f}G")

Return memory usage

Requires the psutil module

Parameters

• format (str) – format string, receives percent, absolute, and total as arguments

• short_format (string) – optional shorter format when the powerline needs to shrink
segments

• auto_shrink (bool) – if set to true, this segment will use short_format per de-
fault, only using format when any message is present on the memory_usage message
channel.

• threshold_good (float) – threshold for gradient level 0: any memory usage percent-
age below this value will have this gradient level.

• threshold_bad (float) – threshold for gradient level 100: any memory usage
percentage above this value will have this gradient level. Load averages between
threshold_good and threshold_bad receive gradient level that indicates relative
position in this interval: (100 * (cur-good) / (bad-good)).

Highlight groups used: memory_usage_gradient (gradient) or memory_usage.

Click values supplied: memory_usage (string), percent (float), absolute (float), total (float)

powerline.segments.common.sys.system_load(short=False, track_cpu_count=False,
threshold_bad=2, threshold_good=1, for-
mat="{avg:.1f}")

Return system load average.

Highlights using system_load_good, system_load_bad and system_load_ugly highlighting
groups, depending on the thresholds passed to the function.

Parameters

• format (str) – format string, receives avg as an argument

• threshold_good (float) – threshold for gradient level 0: any normalized load average
below this value will have this gradient level.

• threshold_bad (float) – threshold for gradient level 100: any normalized load
average above this value will have this gradient level. Load averages between
threshold_good and threshold_bad receive gradient level that indicates relative
position in this interval: (100 * (cur-good) / (bad-good)). Note: both parame-
ters are checked against normalized load averages.

• track_cpu_count (bool) – if True powerline will continuously poll the system to de-
tect changes in the number of CPUs.

• short (bool) – if True only the sys load over last 1 minute will be displayed.

Divider highlight group used: background:divider.

Highlight groups used: system_load_gradient (gradient) or system_load.

4.2. References 29

Powerline, Release beta

Click values supplied: avg (string), avg_raw (int)

powerline.segments.common.sys.temp(hightemp=80, lowtemp=20, accuracy=0.001,
path="/sys/class/thermal/thermal_zone0/temp", for-
mat="{:.1f}°C")

Returns the temperature

Parameters

• format (string) – Output format

• path (string) – Path of the file containing the temperature

• accuracy (int) – Accuracy to read

Click values supplied: temp (string), temp_raw (int)

powerline.segments.common.sys.uptime(shorten_len=3, format=None, seconds_format="
{seconds:d}s", minutes_format=" {min-
utes:d}m", hours_format=" {hours:d}h",
days_format="{days:d}d")

Return system uptime.

Parameters

• days_format (str) – day format string, will be passed days as the argument

• hours_format (str) – hour format string, will be passed hours as the argument

• minutes_format (str) – minute format string, will be passed minutes as the argu-
ment

• seconds_format (str) – second format string, will be passed seconds as the argu-
ment

• shorten_len (int) – shorten the amount of units (days, hours, etc.) displayed

Divider highlight group used: background:divider.

Network

class powerline.segments.common.net.ExternalIpSegment

class powerline.segments.common.net.NetworkLoadSegment

class powerline.segments.common.net.NetworkManagerSegment

powerline.segments.common.net.external_ip(interval=300, query_url="http://ipv4.icanhazip.com/")
Return external IP address.

Parameters query_url (str) – URI to query for IP address, should return only the IP address
as a text string

Suggested URIs:

• http://ipv4.icanhazip.com/

• http://ipv6.icanhazip.com/

• http://icanhazip.com/ (returns IPv6 address if available, else IPv4)

Divider highlight group used: background:divider.

Click values supplied: external_ip (string)

30 Chapter 4. Configuration and customization

http://ipv4.icanhazip.com/
http://ipv6.icanhazip.com/
http://icanhazip.com/

Powerline, Release beta

powerline.segments.common.net.hostname(exclude_domain=False, only_if_ssh=False)
Returns the current hostname.

Parameters

• only_if_ssh (bool) – only return the hostname if currently in an SSH session

• exclude_domain (bool) – return the hostname without domain if there is one

No special highlight groups used.

powerline.segments.common.net.internal_ip(ipv=4, interface="auto")
Return internal IP address

Requires netifaces module to work properly.

Parameters

• interface (str) – Interface on which IP will be checked. Use auto to automatically
detect interface. In this case interfaces with lower numbers will be preferred over interfaces
with similar names. Order of preference based on names:

1. eth and enp followed by number or the end of string.

2. ath, wlan and wlp followed by number or the end of string.

3. teredo followed by number or the end of string.

4. Any other interface that is not lo*.

5. lo followed by number or the end of string.

Use default_gateway to detect the interface based on the machine’s default gateway19

(i.e., the router to which it is connected).

• format (string) – Format string. Use addr to show the address, netmask to show
the subnet mask, and cidr to show the subnet in CIDR notation

• ipv (int) – 4 or 6 for ipv4 and ipv6 respectively, depending on which IP address you need
exactly.

powerline.segments.common.net.network_load(interval=1, update_first=True, inter-
face="auto", si_prefix=False, suf-
fix="B/s", sent_format="UL {value:>8}",
recv_format="DL {value:>8}")

Return the network load.

Uses the psutil module if available for multi-platform compatibility, falls back to reading /sys/class/
net/interface/statistics/rx,tx_bytes.

Parameters

• interface (str) – Network interface to measure (use the special value “auto” to have
powerline try to auto-detect the network interface).

• suffix (str) – String appended to each load string.

• si_prefix (bool) – Use SI prefix, e.g. MB instead of MiB.

• recv_format (str) – Format string that determines how download speed should look
like. Receives value as argument.

• sent_format (str) – Format string that determines how upload speed should look like.
Receives value as argument.

19 https://en.wikipedia.org/wiki/Default_gateway

4.2. References 31

https://en.wikipedia.org/wiki/Default_gateway

Powerline, Release beta

• recv_max (float) – Maximum number of received bytes per second. Is only used to
compute gradient level.

• sent_max (float) – Maximum number of sent bytes per second. Is only used to compute
gradient level.

Divider highlight group used: network_load:divider.

Highlight groups used: network_load_sent_gradient (gradient) or
network_load_recv_gradient (gradient) or network_load_gradient (gradient),
network_load_sent or network_load_recv or network_load.

powerline.segments.common.net.network_manager(interval=100, device_types=None,
auto_shrink=False, format_down=None,
short_format="", format="{device}
{type} {connection}", device=None,
name="status")

Return what NetworkManager knows about the current connection. Requires nmcli

Parameters

• name (string) – the name of the segment, defaults to status. Setting this value changes
the highlight groups used.

Name Highlight Groups Used
status net:status
wifi wireless:quality, net:wifi or wireless:down, net:wifi
ethernet ethernet:up, ethernet:down

• device (string) – the device to use. Per default this segment will list data for all active
devices.

• format (string) – the output format

• short_format (string) – optional shorter format when the powerline needs to shrink
segments

• format_down (string) – if set to any other value than None, it will be shown when no
connection is present on the specified device

• auto_shrink (bool) – if set to true, this segment will use short_format per de-
fault, only using format when any message is present on the net.nm_<name> message
channel.

• device_types (list) – filter for the given device types. May include wifi,
ethernet, gsm, lo, etc Consult man nmcli for a comprehensive list.

Highlight groups used: ethernet:up or net:ethernet, ethernet:down or net:ethernet,
wireless:quality (gradient) or net:wifi, wireless:down or net:wifi, net:status

Click values supplied: (any value available in format)

powerline.segments.common.net.wireless(auto_shrink=False, format_down=None,
short_format="{quality:3.0%}", for-
mat="{quality:3.0%} at {essid}", device=None)

Returns the current connection quality.

Parameters

• device (string) – the device to use. Per default this segment will try to be smart.

• format (string) – the output format

32 Chapter 4. Configuration and customization

Powerline, Release beta

• short_format (string) – optional shorter format when the powerline needs to shrink
segments

• format_down (string) – if set to any other value than None, it will be shown when no
wireless connection is present.

• auto_shrink (bool) – if set to true, this segment will use short_format per de-
fault, only using format when any message is present on the net.wireless message
channel.

Highlight groups used: wireless:quality (gradient), wireless:down alternatively
wireless:quality (gradient)

Click values supplied: quality (int), essid (string)

powerline.segments.common.bluetooth.bluetooth(auto_shrink=False, ig-
nore_unconnected=True, for-
mat_battery=None, format_down=None,
short_format="BT{count_connected:2}",
format="BT {name}")

Return the connected Bluetooth devices. Requires dbus.

Parameters

• format (string) – Format

• short_format (string) – Short format

• format_down (string) – Format when no device is connected

• format_battery (string) – Format used to display the battery status of the connected
device.

• ignore_unconnected (boolean) – When listing devices, ignore

• auto_shrink (boolean) – if set to true, this segment will use short_format per
default, only using format when any message is present on the bluetooth message
channel.

Highlight groups used: bluetooth or bluetooth:down

Click values supplied: (any value available in format)

Current environment

class powerline.segments.common.env.CwdSegment

argspecobjs()
Return a list of valid arguments for inspect.getargspec

Used to determine function arguments.

omitted_args(name, method)
List arguments which should be omitted

Returns a tuple with indexes of omitted arguments.

powerline.segments.common.env.clip(cutoff=10, hide_empty=True)
Return the current clipboard content using xsel.

Parameters

• hide_empty (bool) – Hide the segment if the clipboard is empty.

4.2. References 33

Powerline, Release beta

• cutoff (int) – Max. number of characters to display.

Highlight groups used: clip.

powerline.segments.common.env.cwd(ellipsis="...", use_path_separator=False,
dir_limit_depth=None, dir_shorten_len=None,
shorten_home=True)

Return the current working directory.

Returns a segment list to create a breadcrumb-like effect.

Parameters

• dir_shorten_len (int) – shorten parent directory names to this length (e.g. /long/
path/to/powerline→ /l/p/t/powerline)

• dir_limit_depth (int) – limit directory depth to this number (e.g. /long/path/
to/powerline→ · · ·/to/powerline)

• use_path_separator (bool) – Use path separator in place of soft divider.

• shorten_home (bool) – Shorten home directory to ~.

• ellipsis (str) – Specifies what to use in place of omitted directories. Use None to not
show this subsegment at all.

Divider highlight group used: cwd:divider.

Highlight groups used: cwd:current_folder or cwd. It is recommended to define all highlight groups.

powerline.segments.common.env.environment(variable=None)
Return the value of any defined environment variable

Parameters variable (string) – The environment variable to return if found

powerline.segments.common.env.user(hide_domain=False, hide_user=None)
Return the current user.

Parameters

• hide_user (str) – Omit showing segment for users with names equal to this string.

• hide_domain (bool) – Drop domain component if it exists in a username (delimited by
‘@’).

Highlights the user with the superuser if the effective user ID is 0.

Highlight groups used: superuser or user. It is recommended to define all highlight groups.

powerline.segments.common.env.virtualenv(ignored_names=(’venv’, ’.venv’), ig-
nore_conda=False, ignore_venv=False)

Return the name of the current Python or conda virtualenv. :param list ignored_names:

Names of venvs to ignore. Will then get the name of the venv by ascending to the parent directory

Parameters

• ignore_venv (bool) – Whether to ignore virtual environments. Default is False.

• ignore_conda (bool) – Whether to ignore conda environments. Default is False.

34 Chapter 4. Configuration and customization

Powerline, Release beta

Battery

powerline.segments.common.bat.battery(full_design=-1, original_health=False, bat=0,
gamify_steps=5, rem_time_format="%H:%M", for-
mat="{capacity:3.0%}", icons={’online’: ’CHR’,
’offline’: ’BAT’, ’full’: ”}, name="capacity")

Return batteries’ charge status.

Parameters

• name (str) – Determines the information displayed. Valid values:

Name Description
capacity The remaining capacity of the battery as a float btw 0 and 1.
gamify Rem. cap. encoded in a string of gamify_steps chars from icons.
status Current adapter status (Charging, Discharging or Full).
icon Icon depicting current battery status/capacity.
rem_time Remaining time till the battery is full or empty.

• icons (dict) – Icons used to display the adapter status. Possible entries are online,
offline and full for statuses, 0, 25, 50, 75 and 100 for use with gamify. If online,
offline or full are absent, icon will try to use appropriate icons from gamify.

• format (string) – Format used to display the capacity.

• rem_time_format (string) – Format used to display the remaining time (as a strftime
format string)

• gamify_steps (int) – Number of discrete steps to show between 0% and 100% capacity
if gamify occurs in format. The single one step that is neither completely full nor completely
empty will use the icon corresponding to the percentage that part is empty.

• bat (int) – Specifies the battery to display information for.

• original_health (bool) – Use the original battery health as base value. (Experimen-
tal)

• full_design (int) – Specifies the design capacity of the battery. You will need this
only if this value happens to read wrong. (Experimental)

battery_gradient and battery groups are used in any case, first is preferred.

Highlight groups used: battery or battery_gradient (gradient) or battery:100 or battery:50
or battery:0 or battery:full or battery:online or battery:offline.

Click values supplied: capacity (int), rem_time (string), status (string).

Weather

class powerline.segments.common.wthr.WeatherSegment

powerline.segments.common.wthr.weather(interval=600, update_first=True, lo-
cation_query=None, temp_hottest=40,
temp_coldest=-30, temp_format=None, unit="C",
icons=None)

Return weather from OpenWeatherMaps.

Uses GeoIP lookup from https://freegeoip.app to automatically determine your current location. This should be
changed if you’re in a VPN or if your IP address is registered at another location.

4.2. References 35

https://freegeoip.app

Powerline, Release beta

Returns a list of colorized icon and temperature segments depending on weather conditions.

Parameters

• unit (str) – temperature unit, can be one of F, C or K

• location_query (str) – location query for your current location, e.g. oslo,
norway

• icons (dict) – dict for overriding default icons, e.g. {'heavy_snow' : u'i'}

• temp_format (str) – format string, receives temp as an argument. Should also hold
unit.

• temp_coldest (float) – coldest temperature. Any temperature below it will have gra-
dient level equal to zero.

• temp_hottest (float) – hottest temperature. Any temperature above it will
have gradient level equal to 100. Temperatures between temp_coldest and
temp_hottest receive gradient level that indicates relative position in this interval (100
* (cur-coldest) / (hottest-coldest)).

Divider highlight group used: background:divider.

Highlight groups used: weather_conditions or weather, weather_temp_gradient (gradient) or
weather. Also uses weather_conditions_{condition} for all weather conditions supported by
OpenWeatherMap.

Date and time

powerline.segments.common.time.date(rel_names=[’4’, ’Off’, ’1’, ’2’, ’3’], timezone=None, is-
time=False, format="%Y-%m-%d")

Return the current date.

Parameters

• format (string) – strftime-style date format string

• istime (bool) – If true then segment uses time highlight group.

• timezone (string) – Specify a timezone to use as +HHMM or -HHMM. (Defaults to
system defaults.)

Divider highlight group used: time:divider.

Highlight groups used: time or date.

Click values supplied: contents (string)

36 Chapter 4. Configuration and customization

Powerline, Release beta

powerline.segments.common.time.fuzzy_time(special_case_str={’(23, 58)’: ’round about
midnight’, ’(23, 59)’: ’round about mid-
night’, ’(0, 0)’: ’midnight’, ’(0, 1)’: ’round
about midnight’, ’(0, 2)’: ’round about mid-
night’, ’(12, 0)’: ’noon’}, minute_str={’0’:
"o’clock", ’5’: ’five past’, ’10’: ’ten past’,
’15’: ’quarter past’, ’20’: ’twenty past’,
’25’: ’twenty-five past’, ’30’: ’half past’,
’35’: ’twenty-five to’, ’40’: ’twenty to’, ’45’:
’quarter to’, ’50’: ’ten to’, ’55’: ’five to’},
hour_str=[’twelve’, ’one’, ’two’, ’three’, ’four’,
’five’, ’six’, ’seven’, ’eight’, ’nine’, ’ten’,
’eleven’], timezone=None, unicode_text=False,
format="{minute_str} {hour_str}")

Display the current time as fuzzy time, e.g. “quarter past six”.

Parameters

• format (string) – Format used to display the fuzzy time. (Ignored when a special time
is displayed.)

• unicode_text (bool) – If true then hyphenminuses (regular ASCII -) and single quotes
are replaced with unicode dashes and apostrophes.

• timezone (string) – Specify a timezone to use as +HHMM or -HHMM. (Defaults to
system defaults.)

• list hour_str (string) – Strings to be used to display the hour, starting with mid-
night. (This list may contain 12 or 24 entries.)

• minute_str (dict) – Dictionary mapping minutes to strings to be used to display them.

• special_case_str (dict) – Special strings for special times.

Highlight groups used: fuzzy_time.

Click values supplied: None

Mail

class powerline.segments.common.mail.EmailIMAPSegment

powerline.segments.common.mail.email_imap_alert(username, password, inter-
val=60, update_first=True,
use_ssl=None, folder="INBOX",
port=993, server="imap.gmail.com",
max_msgs=None)

Return unread e-mail count for IMAP servers.

Parameters

• username (str) – login username

• password (str) – login password

• server (str) – e-mail server

• port (int) – e-mail server port

• folder (str) – folder to check for e-mails

4.2. References 37

Powerline, Release beta

• max_msgs (int) – Maximum number of messages. If there are more messages then
max_msgs then it will use gradient level equal to 100, otherwise gradient level is equal
to 100 * msgs_num / max_msgs. If not present gradient is not computed.

• use_ssl (bool) – If True then use SSL connection. If False then do not use it. Default
is True if port is equal to 993 and False otherwise.

Highlight groups used: email_alert_gradient (gradient), email_alert.

Click values supplied: unread_count (string)

Appoints submodule

class powerline.segments.common.appoints.GoogleCalendarSegment

powerline.segments.common.appoints.gcalendar(developer_key, interval=300,
single_when_shrunk=True,
auto_shrink=False, hide_times=[’
(00:00)’], show_count=False,
count=3, time_format=" (%H:%M)",
short_format="{short_summary}{time}",
format="{summary}{time}",
range=1, creden-
tials="/home/docs/.config/powerline/gcalendar_credentials")

Return the next count appoints found in your Google Calendar.

Parameters

• format (string) – The format to use when displaying events. Valid fields are time,
summary, short_summary, count, error, and location.

• short_format (string) – The format to use when displaying events with few space.
Valid fields are time, summary, short_summary, count, error, and location.

• time_format (string) – The format to use when displaying times and dates.

• count (int) – Number of appoints that shall be shown

• show_count (bool) – Add an additional segment containing the number of events in the
specified range.

• hide_times (list) – Times (using time_format) not to be displayed as start times.

• credentials (string) – A path to a file containing credentials to access the Google
Calendar API.

• developer_key (string) – Your Google dev key.

• range (int) – Number of days into the future to check. No more than 250 events will be
displayed in any case.

• auto_shrink (bool) – Use short_format per default unless the appoints.
gcalendar channel is full.

• single_when_shrunk (bool) – Only show a single segment using short_format
when this segment is in its short mode.

Highlight groups used: appoint, appoint:urgent, appoint:count.

38 Chapter 4. Configuration and customization

Powerline, Release beta

Media players

class powerline.segments.common.players.ClementinePlayerSegment

class powerline.segments.common.players.CmusPlayerSegment

get_player_status(pl)
Return cmus player information.

cmus-remote -Q returns data with multi-level information i.e. status playing file <file_name> tag
artist <artist_name> tag title <track_title> tag .. tag n set continue <true|false> set repeat <true|false>
set .. set n

For the information we are looking for we don’t really care if we’re on the tag level or the set level. The
dictionary comprehension in this method takes anything in ignore_levels and brings the key inside that to
the first level of the dictionary.

class powerline.segments.common.players.DbusPlayerSegment

class powerline.segments.common.players.ITunesPlayerSegment

class powerline.segments.common.players.MocPlayerSegment

get_player_status(pl)
Return Music On Console (mocp) player information.

mocp -i returns current information i.e.

File: filename.format
Title: full title
Artist: artist name
SongTitle: song title
Album: album name
TotalTime: 00:00
TimeLeft: 00:00
TotalSec: 000
CurrentTime: 00:00
CurrentSec: 000
Bitrate: 000kbps
AvgBitrate: 000kbps
Rate: 00kHz

For the information we are looking for we don’t really care if we have extra-timing information or bit rate
level. The dictionary comprehension in this method takes anything in ignore_info and brings the key inside
that to the right info of the dictionary.

class powerline.segments.common.players.MpdPlayerSegment

class powerline.segments.common.players.PlayerSegment

argspecobjs()
Return a list of valid arguments for inspect.getargspec

Used to determine function arguments.

omitted_args(name, method)
List arguments which should be omitted

Returns a tuple with indexes of omitted arguments.

4.2. References 39

Powerline, Release beta

class powerline.segments.common.players.RDIOPlayerSegment

class powerline.segments.common.players.RhythmboxPlayerSegment

class powerline.segments.common.players.SpotifyAppleScriptPlayerSegment

class powerline.segments.common.players.SpotifyDbusPlayerSegment

powerline.segments.common.players.clementine(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’:
”, ’play’: ’>’, ’pause’: ’||’, ’stop’:
’X’, ’shuffle’: ’~>?’, ’repeat’: ’:|’,
’loop’: ’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title}
({total})")

Return clementine player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.clementine",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

40 Chapter 4. Configuration and customization

Powerline, Release beta

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.cmus(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’, ’steps’:
5}, state_symbols={’fallback’: ”, ’play’: ’>’,
’pause’: ’||’, ’stop’: ’X’, ’shuffle’: ’~>?’, ’re-
peat’: ’:|’, ’loop’: ’:|1’, ’next’: ’>|’, ’previous’:
’|<’}, short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title} ({total})")

Return CMUS player information

Requires cmus-remote command be accessible from $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.cmus",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

4.2. References 41

Powerline, Release beta

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.dbus_player(player_name, chan-
nel_name=None, auto_shrink=False,
show_controls=False,
auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’:
”, ’play’: ’>’, ’pause’: ’||’, ’stop’: ’X’,
’shuffle’: ’~>?’, ’repeat’: ’:|’, ’loop’:
’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title}
({total})")

Return generic dbus player state

Requires dbus python module. Only for players that support specific protocol (e.g. like spotify()
and clementine()).

This player segment should be added like this:

{
"function": "powerline.segments.common.players.dbus_player",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

42 Chapter 4. Configuration and customization

Powerline, Release beta

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

• player_name (str) – Player name. Used in error messages only.

• bus_name (str) – Dbus bus name.

• player_path (str) – Path to the player on the given bus.

• iface_prop (str) – Interface properties name for use with dbus.Interface.

• iface_player (str) – Player name.

powerline.segments.common.players.itunes(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’: ”,
’play’: ’>’, ’pause’: ’||’, ’stop’: ’X’,
’shuffle’: ’~>?’, ’repeat’: ’:|’, ’loop’:
’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title} ({to-
tal})")

Return iTunes now playing information

Requires osascript.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.itunes",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

4.2. References 43

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.mocp(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’, ’steps’:
5}, state_symbols={’fallback’: ”, ’play’: ’>’,
’pause’: ’||’, ’stop’: ’X’, ’shuffle’: ’~>?’, ’re-
peat’: ’:|’, ’loop’: ’:|1’, ’next’: ’>|’, ’previous’:
’|<’}, short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title} ({total})")

Return MOC (Music On Console) player information

Requires version >= 2.3.0 and mocp executable in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.mocp",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

44 Chapter 4. Configuration and customization

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.mpd(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’, ’steps’:
5}, state_symbols={’fallback’: ”, ’play’: ’>’,
’pause’: ’||’, ’stop’: ’X’, ’shuffle’: ’~>?’, ’repeat’:
’:|’, ’loop’: ’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}", for-
mat="{state_symbol} {artist} - {title} ({total})",
port=6600, password=None, host="localhost")

Return Music Player Daemon information

Requires mpd Python module (e.g. python-mpd220 or python-mpd21 Python package) or alternatively the
mpc command to be accessible from $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.mpd",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

20 https://pypi.python.org/pypi/python-mpd2
21 https://pypi.python.org/pypi/python-mpd

4.2. References 45

https://pypi.python.org/pypi/python-mpd2
https://pypi.python.org/pypi/python-mpd

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

• host (str) – Host on which mpd runs.

• password (str) – Password used for connecting to daemon.

• port (int) – Port which should be connected to.

powerline.segments.common.players.rdio(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’, ’steps’:
5}, state_symbols={’fallback’: ”, ’play’: ’>’,
’pause’: ’||’, ’stop’: ’X’, ’shuffle’: ’~>?’, ’re-
peat’: ’:|’, ’loop’: ’:|1’, ’next’: ’>|’, ’previous’:
’|<’}, short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title} ({total})")

Return rdio player information

Requires osascript available in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.rdio",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

46 Chapter 4. Configuration and customization

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.rhythmbox(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’:
”, ’play’: ’>’, ’pause’: ’||’, ’stop’: ’X’,
’shuffle’: ’~>?’, ’repeat’: ’:|’, ’loop’:
’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title}
({total})")

Return rhythmbox player information

Requires rhythmbox-client available in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.rhythmbox",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

4.2. References 47

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify(channel_name=None, auto_shrink=False,
show_controls=False, auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’: ”,
’play’: ’>’, ’pause’: ’||’, ’stop’: ’X’,
’shuffle’: ’~>?’, ’repeat’: ’:|’, ’loop’:
’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title}
({total})")

Return spotify player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

48 Chapter 4. Configuration and customization

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify_apple_script(channel_name=None,
auto_shrink=False,
show_controls=False,
auto_disable=False,
progress_args={’full’:
’#’, ’empty’: ’_’, ’steps’: 5},
state_symbols={’fallback’:
”, ’play’: ’>’, ’pause’:
’||’, ’stop’: ’X’, ’shuf-
fle’: ’~>?’, ’repeat’:
’:|’, ’loop’: ’:|1’, ’next’:
’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol}
{artist} - {title} ({total})")

Return spotify player information

Requires osascript available in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify_apple_script",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

4.2. References 49

Powerline, Release beta

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify_dbus(channel_name=None,
auto_shrink=False,
show_controls=False,
auto_disable=False,
progress_args={’full’: ’#’, ’empty’: ’_’,
’steps’: 5}, state_symbols={’fallback’:
”, ’play’: ’>’, ’pause’: ’||’, ’stop’: ’X’,
’shuffle’: ’~>?’, ’repeat’: ’:|’, ’loop’:
’:|1’, ’next’: ’>|’, ’previous’: ’|<’},
short_format="{state_symbol}{short_title}",
format="{state_symbol} {artist} - {title}
({total})")

Return spotify player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player:fallback or player, player:play or player, player:pause or
player, player:stop or player.

Parameters

50 Chapter 4. Configuration and customization

Powerline, Release beta

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state used
in case function failed to get player state. For this state symbol is by default
empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the
following keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

Volume

powerline.segments.common.volume.vol(icons={’full’: ’=’, ’cur’: ’X’, ’empty’: ’-’}, id=0, con-
trol="Master", format_muted=None, format="VL {vol-
ume:3.0%}")

Return the current volume.

Parameters

• format (string) – The format.

• control (string) – The control.

• id (int) – The control id.

• icons (dict) – Icons for the visualization.

Highlight groups used: volume:gradient (gradient).

Click values supplied: volume (int), muted (boolean)

Generic Segments

powerline.segments.common.generic.click_status(format_off="OFF", format_on=None)
Returns whether click interaction is currently paused.

Parameters

• format_on (string) – Content to display if the bar currently allows clicks.

• format_off (string) – Content to display if the bar currently does not allow clicks.

4.2. References 51

Powerline, Release beta

Highlicght groups used: clicks_on or clicks_off.

powerline.segments.common.generic.generic_growable(channel_name, seg-
ments_short, segments_long,
show_without_clicks=False)

Returns the segments in segments_short if the channel channel_name is empty, otherwise the segments
in segments_long.

Parameters

• channel_name (string) – The channel to use. This should be different across different
instances of this segment if you don’t want the different instances to interact with each other.

• segments_short ((string,string_list)_list) – A list of (contents, high-
light_groups) touples, the segments to be displayed in the short mode.

• segments_long ((string,string_list)_list) – A list of (contents, high-
light_groups) touples, the segments to be displayed in the long mode.

• show_without_clicks (bool) – Also show the segment if click support in the bar is
paused.

Interaction: #bar;ch_<fill/clear/toggle> fills/ clears/ toggles the specified channel.

powerline.segments.common.generic.generic_shell(command, high-
light_groups=[’generic_shell’])

Execute the given command in a shell and return its result

Parameters

• command (string) – The command to execute.

• highlight_groups (string_list) – The highlight groups to use.

Click values supplied: contents (string)

i3wm segments

powerline.segments.i3wm.active_window(show_empty=False, auto_expand=False,
max_width=80, item_length=20, global_menu=False,
cutoff=100)

Returns the title of the currently active window. To enhance the global menu support, add the following to your
.bashrc:

if [-n "$GTK_MODULES"]; then
GTK_MODULES="${GTK_MODULES}:appmenu-gtk-module"

else
GTK_MODULES="appmenu-gtk-module"

fi

if [-z "$UBUNTU_MENUPROXY"]; then
UBUNTU_MENUPROXY=1

fi

export GTK_MODULES
export UBUNTU_MENUPROXY

Parameters

• cutoff (int) – Maximum title length. If the title is longer, the window_class is used
instead.

52 Chapter 4. Configuration and customization

Powerline, Release beta

• global_menu (boolean) – Activate global menu support (experimental)

• item_length (int) – Maximum length of a menu item.

• max_width (int) – Maximum total length of the content.

• auto_expand (bool) – Add spaces to center the segment.

• show_empty (bool) – Show the sehment if no window is focused.

Highlight groups used: active_window_title:single or active_window_title:stacked_unfocused
or active_window_title:stacked or active_window_title.

powerline.segments.i3wm.mode(names={’default’: None})
Returns current i3 mode

Parameters default (str) –

Specifies the name to be displayed instead of “default”. By default the segment is left out in
the default mode.

Highlight groups used: mode

powerline.segments.i3wm.scratchpad(icons={’fresh’: ’O’, ’changed’: ’X’})
Returns the windows currently on the scratchpad

Parameters icons (dict) –

Specifies the strings to show for the different scratchpad window states. Must contain the
keys fresh and changed.

Highlight groups used: scratchpad or scratchpad:visible, scratchpad or
scratchpad:focused, scratchpad or scratchpad:urgent.

powerline.segments.i3wm.workspaces(hide_empty_workspaces=False, priority_workspaces=[],
show_output=False, show_dummy_workspace=False,
show_multiple_icons=True, show_icons=True,
icons={’Xfce4-terminal’: ’\uf120’, ’Chromium’: ’\uf268’,
’Google-chrome’: ’\uf268’, ’Steam’: ’\uf1b6’, ’jetbrains’:
’\uf121’, ’Gimp’: ’\uf044’, ’Pavucontrol’: ’\uf1de’,
’Lmms’: ’\uf1de’, ’thunderbird’: ’\uf0e0’, ’Thunar’:
’\uf07b’, ’Skype’: ’\uf17e’, ’TelegramDesktop’: ’\uf2c6’,
’feh’: ’\uf1c5’, ’firefox’: ’\uf269’, ’Evince’: ’\uf1c1’,
’Okular’: ’\uf1c1’, ’libreoffice-calc’: ’\uf0ce’, ’libreoffice-
writer’: ’\uf1c2’, ’multiple’: ’\uf009’}, separator=" ",
strip=0, output=None, only_show=None)

Return list of used workspaces

Parameters

• only_show (list) – Specifies which workspaces to show. Valid entries are
"visible", "urgent" and "focused". If omitted or null all workspaces are shown.

• output (string) – May be set to the name of an X output. If specified, only workspaces
on that output are shown. Overrides automatic output detection by the lemonbar renderer
and bindings. Use “__all__” to show workspaces on all outputs.

• strip (int) – Specifies how many characters from the front of each workspace name
should be stripped (e.g. to remove workspace numbers). Defaults to zero.

• separator (string) – Specifies a string to be inserted between the workspace name
and program icons and between program icons.

4.2. References 53

Powerline, Release beta

• icons (dict) – A dictionary mapping a substring of window classes to strings to be used
as an icon for that window class. The following window classes have icons by default:
Xfce4-terminal, Chromium, Steam, jetbrains, Gimp, Pavucontrol, Lmms,
Thunderbird, Thunar, Skype, TelegramDesktop, feh, Firefox, Evince,
Okular, libreoffice-calc, libreoffice-writer. You can override the de-
fault icons by defining an icon for that window class yourself, and disable single icons by
setting their icon to “” or None. Further, there is a multiple icon for workspaces contain-
ing more than one window (which is used if show_multiple_icons is False)

• show_icons (boolean) – Determines whether to show icons. Defaults to True.

• show_multiple_icons (boolean) – If this is set to False, instead of displaying mul-
tiple icons per workspace, the icon “multiple” will be used.

• show_dummy_workspace (boolean) – If this is set to True, this segment will always
display an additional, non-existing workspace. This workspace will be handled as if it was
a non-urgent and non-focused regular workspace, i.e., click events will work as with normal
workspaces.

• show_output (boolean) – Show the name of the output if more than one output is
connected and output is not set to __all__.

• list priority_workspaces (string) – A list of workspace names to be sorted
before any other workspaces in the given order.

• hide_empty_workspaces (boolean) – Hides all workspaces without any open win-
dow. (Does not remove the dummy workspace.) Also hides non-focussed workspaces con-
taining only an open scratchpad.

Highlight groups used: workspace or workspace:visible, workspace or workspace:focused,
workspace or workspace:urgent or output.

Click values supplied: workspace_name (string) for workspaces and output_name (string) for outputs.

PDB segments

powerline.segments.pdb.current_code_name()
Displays name of the code object of the current frame

powerline.segments.pdb.current_context()
Displays currently executed context name

This is similar to current_code_name(), but gives more details.

Currently it only gives module file name if code_name happens to be <module>.

powerline.segments.pdb.current_file(basename=True)
Displays current file name

Parameters basename (bool) – If true only basename is displayed.

powerline.segments.pdb.current_line()
Displays line number that is next to be run

powerline.segments.pdb.stack_depth(full_stack=False)
Displays current stack depth

Result is relative to the stack depth at the time prompt was first run.

Parameters full_stack (bool) – If true then absolute depth is used.

54 Chapter 4. Configuration and customization

Powerline, Release beta

RandR segments

class powerline.segments.randr.OutputSegment

class powerline.segments.randr.ScreenRotationSegment

powerline.segments.randr.output(interval=2, auto_shrink=True, hide_if_single_output=True,
status_icons={’on’: ’on’, ’off’: ’off’},
short_format="{mirror_icon} {output_count}", out-
put_format="{output} {status_icon}", mirror_icons={’mirror’:
’M’, ’extend’: ’E’}, mirror_format="{mirror_icon}", re-
draw_hook=None, auto_update=False)

Manage connected outputs, optionally detect newly (dis-)connected outputs automatically.

Requires python-xlib.

Parameters

• mirror_format (string) – Format used to display the mirror mode (extend/mirror)
part of the segment. Valid fields are mirror_state and mirror_icon.

• mirror_icons (dict) – Icons used in the mirror_icon field of mirror_format.
Needs the entries extend and mirror.

• output_format (string) – Format used to display outputs and information about their
status. Valid fields are output and status_icon.

• status_icons (dict) – Icons used in the status_icon field of output_format.
Needs the entries off and on.

• hide_if_single_output (bool) – Hide the segment if only a single output is con-
nected. (Enabling this will still show the segment if there is more than one output connected,
of whom only one is not turned off.)

• auto_update (bool) – If set to true, this segment will automatically enable newly con-
nected outputs or disable newly disconnected outputs according to the current mode. Also
restarts bars appropriately.

Highlight groups used: output:mirror or output:extend or output:mirror_state or output
(for the mirror mode part) and output:off or output:on or output:status or output (for the out-
puts).

Click values supplied: mirror_state (string) for the mirror mode part and output_name (string),
output_status (string) in the remaining part.

Interaction: This segment supports interaction via bar commands in the following way. (Note that parameters
given to the bar may be combined with click values.)

Bar command Description
#bar;pass_oneshot:mode:<mode/toggle> Set the mirror mode to <mode> or <toggle> it.
#bar;pass_oneshot:output:<output>:<on/off/toggle>Turn output <output> <on/off> or <toggle> its status.

Restarts bars.

4.2. References 55

Powerline, Release beta

powerline.segments.randr.srot(output, interval=2, additional_controls=[], icons={’left’:
’l’, ’right’: ’r’, ’normal’: ’n’, ’inverted’: ’i’, ’locked’:
’l’, ’auto’: ’a’}, format="{icon}", name="rotation",
show_on_all_outputs=True, sensor_max_value=None,
sensor_is_unsigned=False, hide_controls=True, rota-
tion_hook=None, touchpad_states=None, touchpads=[],
mapped_inputs=[], gravity_triggers=None, states=[’normal’,
’inverted’, ’left’, ’right’])

Manage screen rotation and optionally display some information. Optionally disables Touchpads in rotated
states. (Note that rotating to the left and right states does not currently work if there is another output
connected whose displayed content is not mirrored to the screen to be rotated.)

Requires xinput and python-xlib and an accelerometer.

Parameters

• output (string) – The initial output to be rotated and to which touchscreen and sty-
lus inputs are mapped. (Note that this can be changed at runtime via interaction with the
segment.)

• show_on_all_outputs (bool) – If set to false, this segment is only visible on the
specified output.

• name (string) – Possible values are rotation and mode. This value is used to deter-
mine which highlight groups to use and how to populate the icon field in the format string
in the returned segment. If set to any other value, this segment will produce no output.

• format (string) – Format string. Possible fields are rotation (the current rotation
state of the screen), mode (either auto or locked, depending on whether auto-rotation
on the screen is enabled or not), and icon (an icon depicting either the rotation status or
the auto-rotation status, depending on the segment’s name).

• icons (dict) – Dictionary mapping rotation states (normal, inverted, left,
right) and auto-rotation states (locked, auto) to strings to use to display them. De-
pending on the given name parameter, not all of these fields must be populated.

• list states (string) – Allowed rotation states. Possible entries are normal,
inverted, left, and right. Per default, all of them are enabled.

• gravity_triggers (dict) – Sensor values that trigger rotation as a dictio-
nary mapping rotation states (normal, inverted, left, right) to numbers.
Defaults to {'normal': -8, 'inverted': 8, 'left': 8, 'right':
-8}, meaning that a (scaled) reading of the in_accel_x_raw reading greater than 8 trig-
gers a rotation to state left and a reading less than -8 triggers a rotation to state right.
Readings of in_accel_y_raw greater and less than 8 and -8 respectively will yield a
rotation to the inverted and normal states respectively.

• mapped_inputs (string_list) – List of substrings of device names that should be
mapped to the specified output. The entries in the specified list should be only substrings of
devices listed as Virtual core pointer, not of devices listed as Virtual core
keyboard.

• touchpads (string_list) – List of substrings of device names of touchpads to be
managed. The entries in the specified list should be only substrings of devices listed as
Virtual core pointer, not of devices listed as Virtual core keyboard.

• touchpad_states (dict) – Dictionary mapping a rotation state (normal,
inverted, left, right) to either enabled or disabled, depending on whether
the touchpads shall be enabled or disabled if the output is currently in the corresponding
state.

56 Chapter 4. Configuration and customization

Powerline, Release beta

• rotation_hook (string) – A string to be run by a shell after a rotation that changes
the screen ratio (e.g. from normal to left). It will be executed after the rotation takes
place, but before the inputs are mapped to the output and before the bar resizes itself.

• additional_controls ((string,string_list)_list) – A list of (contents,
highlight_groups) pairs. For each entry, an additional segment with the given contents and
highlight groups is omitted. These segments obtain the same click values and may also be
used to control the segment behavior. Also, all segments additionally use the srot highlight
group and the contents may be a format string with all fields (except icon) available.

• hide_controls (bool) – Hide the extra control segments. They may be shown via
segment interaction.

Highlight groups used: srot:normal or srot:inverted or srot:right or srot:left or
srot:rotation or srot (if the name parameter is rotation) or srot:auto or srot:locked or
srot:mode or srot (if the name parameter is mode) or None (if the name is set to something else).

Click values supplied: mode (string), rotation (string), output (string, the output this segment is rendered
to), managed_output (string, the screen currently managed), touch_output (string, the screen where
touch inputs are mapped to).

Interaction: This segment supports interaction via bar commands in the following way. (Note that parameters
given to the bar may be combined with click values.)

Bar command Description
#bar;pass_oneshot:capture_input:<output>Map all specified input devices to <output> (experimental)
#bar;pass_oneshot:capture:<output> Rotate the screen <output> instead (experimental)
#bar;pass_oneshot:toggle_rot Toggle auto rotation if used on the screen that is currently managed;

otherwise ignored.
#bar;pass_oneshot:toggle_controls:<outpt>Toggles the visibility of additional control segments on output <out-

put>

Shell segments

class powerline.segments.shell.ShellCwdSegment

powerline.segments.shell.continuation(renames={}, right_align=False,
omit_cmdsubst=True)

Display parser state.

Parameters

• omit_cmdsubst (bool) – Do not display cmdsubst parser state if it is the last one.

• right_align (bool) – Align to the right.

• renames (dict) – Rename states: {old_name : new_name}. If new_name is
None then given state is not displayed.

Highlight groups used: continuation, continuation:current.

powerline.segments.shell.cwd(ellipsis="...", use_path_separator=False, dir_limit_depth=None,
dir_shorten_len=None, use_shortened_path=True)

Return the current working directory.

Returns a segment list to create a breadcrumb-like effect.

Parameters

4.2. References 57

Powerline, Release beta

• dir_shorten_len (int) – shorten parent directory names to this length (e.g. /long/
path/to/powerline→ /l/p/t/powerline)

• dir_limit_depth (int) – limit directory depth to this number (e.g. /long/path/
to/powerline→ · · ·/to/powerline)

• use_path_separator (bool) – Use path separator in place of soft divider.

• use_shortened_path (bool) – Use path from shortened_path --renderer-arg
argument. If this argument is present shorten_home argument is ignored.

• shorten_home (bool) – Shorten home directory to ~.

• ellipsis (str) – Specifies what to use in place of omitted directories. Use None to not
show this subsegment at all.

Divider highlight group used: cwd:divider.

Highlight groups used: cwd:current_folder or cwd. It is recommended to define all highlight groups.

powerline.segments.shell.jobnum(show_zero=False)
Return the number of jobs.

Parameters show_zero (bool) – If False (default) shows nothing if there are no jobs. Otherwise
shows zero for no jobs.

powerline.segments.shell.last_pipe_status(signal_names=True)
Return last pipe status.

Parameters signal_names (bool) – If True (default), translate signal numbers to human-
readable names.

Highlight groups used: exit_fail, exit_success

powerline.segments.shell.last_status(signal_names=True)
Return last exit code.

Parameters signal_names (bool) – If True (default), translate signal numbers to human-
readable names.

Highlight groups used: exit_fail

powerline.segments.shell.mode(default=None, override={’vicmd’: ’COMMND’, ’viins’: ’IN-
SERT’})

Return the current mode.

Parameters

• override (dict) – dict for overriding mode strings.

• default (str) – If current mode is equal to this string then this segment will not get dis-
played. If not specified the value is taken from $POWERLINE_DEFAULT_MODE variable.
This variable is set by zsh bindings for any mode that does not start from vi.

Tmux segments

powerline.segments.tmux.attached_clients(minimum=1)
Return the number of tmux clients attached to the currently active session

Parameters minimum (int) – The minimum number of attached clients that must be present for
this segment to be visible.

58 Chapter 4. Configuration and customization

Powerline, Release beta

Vim segments

class powerline.segments.vim.VimVCSInfoSegment

powerline.segments.vim.bufnr(show_current=True)
Show buffer number

Parameters show_current (bool) – If False do not show current window number.

powerline.segments.vim.col_current()
Return the current cursor column.

powerline.segments.vim.csv_col_current(name_format=" ({column_name:.15})", dis-
play_name="auto")

Display CSV column number and column name

Requires filetype to be set to csv.

Parameters

• or str name (bool) – May be True, False and "auto". In the first case value from
the first raw will always be displayed. In the second case it will never be displayed. In the
last case csv.Sniffer().has_header() will be used to detect whether current file
contains header in the first column.

• name_format (str) – String used to format column name (in case display_name is
set to True or "auto"). Accepts column_name keyword argument.

Highlight groups used: csv:column_number or csv, csv:column_name or csv.

powerline.segments.vim.file_bom(segment_info)
Return BOM of the current file

Returns Byte order mark or None if unknown or missing BOM

Divider highlight group used: background:divider.

powerline.segments.vim.file_directory(shorten_home=False, shorten_cwd=True,
shorten_user=True, remove_scheme=True)

Return file directory (head component of the file path).

Parameters

• remove_scheme (bool) – Remove scheme part from the segment name, if present. See
documentation of file_scheme segment for the description of what scheme is. Also removes
the colon.

• shorten_user (bool) – Shorten $HOME directory to ~/. Does not work for files with
scheme.

• shorten_cwd (bool) – Shorten current directory to ./. Does not work for files with
scheme present.

• shorten_home (bool) – Shorten all directories in /home/ to ~user/ instead of /
home/user/. Does not work for files with scheme present.

powerline.segments.vim.file_encoding(segment_info)
Return file encoding/character set.

Returns file encoding/character set or None if unknown or missing file encoding

Divider highlight group used: background:divider.

powerline.segments.vim.file_format(segment_info)
Return file format (i.e. line ending type).

4.2. References 59

Powerline, Release beta

Returns file format or None if unknown or missing file format

Divider highlight group used: background:divider.

powerline.segments.vim.file_name(no_file_text="[No file]", display_no_file=False)
Return file name (tail component of the file path).

Parameters

• display_no_file (bool) – display a string if the buffer is missing a file name

• no_file_text (str) – the string to display if the buffer is missing a file name

Highlight groups used: file_name_no_file or file_name, file_name.

powerline.segments.vim.file_scheme()
Return the protocol part of the file.

Protocol is the part of the full filename just before the colon which starts with a latin letter and contains only
latin letters, digits, plus, period or hyphen (refer to RFC398622 for the description of URI scheme). If there is
no such a thing None is returned, effectively removing segment.

Note: Segment will not check whether there is // just after the colon or if there is at least one slash after the
scheme. Reason: it is not always present. E.g. when opening file inside a zip archive file name will look like
zipfile:/path/to/archive.zip::file.txt. file_scheme segment will catch zipfile part
here.

powerline.segments.vim.file_size(si_prefix=False, suffix="B")
Return file size in &encoding.

Parameters

• suffix (str) – string appended to the file size

• si_prefix (bool) – use SI prefix, e.g. MB instead of MiB

Returns file size or None if the file isn’t saved or if the size is too big to fit in a number

powerline.segments.vim.file_type(segment_info)
Return file type.

Returns file type or None if unknown file type

Divider highlight group used: background:divider.

powerline.segments.vim.line_count()
Return the line count of the current buffer.

powerline.segments.vim.line_current()
Return the current cursor line.

powerline.segments.vim.line_percent(gradient=False)
Return the cursor position in the file as a percentage.

Parameters gradient (bool) – highlight the percentage with a color gradient (by default a green
to red gradient)

Highlight groups used: line_percent_gradient (gradient) or line_percent.

powerline.segments.vim.mode(override=None)
Return the current vim mode.

22 http://tools.ietf.org/html/rfc3986#section-3.1

60 Chapter 4. Configuration and customization

http://tools.ietf.org/html/rfc3986#section-3.1

Powerline, Release beta

If mode (returned by mode() VimL function, see :h mode() in Vim) consists of multiple characters and
necessary mode is not known to powerline then it will fall back to mode with last character(s) ignored.

Parameters override (dict) – dict for overriding default mode strings, e.g. { 'n':
'NORM' }

powerline.segments.vim.modified_buffers(join_str=", ", text="+ ")
Return a comma-separated list of modified buffers.

Parameters

• text (str) – text to display before the modified buffer list

• join_str (str) – string to use for joining the modified buffer list

powerline.segments.vim.modified_indicator(text="+")
Return a file modified indicator.

Parameters text (string) – text to display if the current buffer is modified

powerline.segments.vim.paste_indicator(text="PASTE")
Return a paste mode indicator.

Parameters text (string) – text to display if paste mode is enabled

powerline.segments.vim.position(gradient=False, position_strings={’top’: ’Top’, ’bottom’:
’Bot’, ’all’: ’All’})

Return the position of the current view in the file as a percentage.

Parameters

• position_strings (dict) – dict for translation of the position strings, e.g.
{"top":"Oben", "bottom":"Unten", "all":"Alles"}

• gradient (bool) – highlight the percentage with a color gradient (by default a green to
red gradient)

Highlight groups used: position_gradient (gradient), position.

powerline.segments.vim.readonly_indicator(text="RO")
Return a read-only indicator.

Parameters text (string) – text to display if the current buffer is read-only

powerline.segments.vim.tab(end=False)
Mark start of the clickable region for tabpage

Parameters end (bool) – In place of starting region for the current tab end it.

No highlight groups are used (literal segment).

powerline.segments.vim.tab_modified_indicator(text="+")
Return a file modified indicator for tabpages.

Parameters text (string) – text to display if any buffer in the current tab is modified

Highlight groups used: tab_modified_indicator or modified_indicator.

powerline.segments.vim.tabnr(show_current=True)
Show tabpage number

Parameters show_current (bool) – If False do not show current tabpage number. This is
default because tabnr is by default only present in tabline.

powerline.segments.vim.trailing_whitespace()
Return the line number for trailing whitespaces

4.2. References 61

Powerline, Release beta

It is advised not to use this segment in insert mode: in Insert mode it will iterate over all lines in buffer each
time you happen to type a character which may cause lags. It will also show you whitespace warning each time
you happen to type space.

Highlight groups used: trailing_whitespace or warning.

powerline.segments.vim.vcsinfo(name, ignore_statuses=(), status_colors=False)
Return the current revision info

Parameters

• name (str) – Determines what property should be used. Valid values:

Name Description
branch Current branch name.
short Current commit revision abbreviated hex or revno.
summary Current commit summary.
name Human-readable name of the current revision.
bookmark Current bookmark (mercurial) or branch (otherwise).

• status_colors (bool) – Determines whether repository status will be used to deter-
mine highlighting. Default: False.

• ignore_statuses (bool) – List of statuses which will not result in repo being marked
as dirty. Most useful is setting this option to ["U"]: this will ignore repository which has
just untracked files (i.e. repository with modified, deleted or removed files will be marked as
dirty, while just untracked files will make segment show clean repository). Only applicable
if status_colors option is True.

Highlight groups used: vcsinfo:clean, vcsinfo:dirty, vcsinfo.

Additionally vcsinfo:{name} is used.

powerline.segments.vim.virtcol_current(gradient=True)
Return current visual column with concealed characters ignored

Parameters gradient (bool) – Determines whether it should show textwidth-based gradient
(gradient level is virtcol * 100 / textwidth).

Highlight groups used: virtcol_current_gradient (gradient), virtcol_current or
col_current.

powerline.segments.vim.visual_range(V_text="L:{rows}", v_text_multiline="L:{rows}",
v_text_oneline="C:{vcols}", CTRL_V_text="{rows} x
{vcols}")

Return the current visual selection range.

Parameters

• CTRL_V_text (str) – Text to display when in block visual or select mode.

• v_text_oneline (str) – Text to display when in charaterwise visual or select mode,
assuming selection occupies only one line.

• v_text_multiline (str) – Text to display when in charaterwise visual or select mode,
assuming selection occupies more then one line.

• V_text (str) – Text to display when in linewise visual or select mode.

All texts are format strings which are passed the following parameters:

62 Chapter 4. Configuration and customization

Powerline, Release beta

Parameter Description
sline Line number of the first line of the selection
eline Line number of the last line of the selection
scol Column number of the first character of the selection
ecol Column number of the last character of the selection
svcol Virtual column number of the first character of the selection
secol Virtual column number of the last character of the selection
rows Number of lines in the selection
cols Number of columns in the selection
vcols Number of virtual columns in the selection

powerline.segments.vim.window_title()
Return the window title.

This currently looks at the quickfix_title window variable, which is used by Syntastic and Vim itself.

It is used in the quickfix theme.

powerline.segments.vim.winnr(show_current=True)
Show window number

Parameters show_current (bool) – If False do not show current window number.

Plugin-specific segments

Asynchronous Linter Engine (ALE) segments

powerline.segments.vim.plugin.ale.ale(warn_format="WARN: ln {first_line} ({num}) ",
err_format="ERR: ln {first_line} ({num}) ")

Show whether ALE has found any errors or warnings

Parameters

• err_format (str) – Format string for errors.

• warn_format (str) – Format string for warnings.

Highlight groups used: ale:warning or warning, ale:error or error.

Syntastic segments

powerline.segments.vim.plugin.syntastic.syntastic(warn_format="WARN: {first_line}
({num}) ", err_format="ERR:
{first_line} ({num}) ")

Show whether syntastic has found any errors or warnings

Parameters

• err_format (str) – Format string for errors.

• warn_format (str) – Format string for warnings.

Highlight groups used: syntastic:warning or warning, syntastic:error or error.

4.2. References 63

Powerline, Release beta

Command-T segments

powerline.segments.vim.plugin.commandt.finder()
Display Command-T finder name

Requires $command_t.active_finder and methods (code above may monkey-patch $command_t to add them).
All Command-T finders have CommandT:: module prefix, but it is stripped out (actually, any CommandT::
substring will be stripped out).

Highlight groups used: commandt:finder.

powerline.segments.vim.plugin.commandt.path()
Display path used by Command-T

Requires $command_t.active_finder and .path methods (code above may monkey-patch $command_t to add
them).

$command_t.active_finder is required in order to omit displaying path for finders MRUBufferFinder,
BufferFinder, TagFinder and JumpFinder (pretty much any finder, except FileFinder).

Highlight groups used: commandt:path.

Tagbar segments

powerline.segments.vim.plugin.tagbar.current_tag(flags="s")
Return tag that is near the cursor.

Parameters flags (str) – Specifies additional properties of the displayed tag. Supported values:

• s - display complete signature

• f - display the full hierarchy of the tag

• p - display the raw prototype

More info in the official documentation23 (search for “tagbar#currenttag”).

NERDTree segments

powerline.segments.vim.plugin.nerdtree.nerdtree()
Return directory that is shown by the current buffer.

Highlight groups used: nerdtree:path or file_name.

Capslock segments

powerline.segments.vim.plugin.capslock.capslock_indicator(text="CAPS")
Shows the indicator if tpope/vim-capslock plugin is enabled

Note: In the current state plugin automatically disables itself when leaving insert mode. So trying to use this
segment not in insert or replace modes is useless.

Parameters text (str) – String to show when software capslock presented by this plugin is active.
23 https://github.com/majutsushi/tagbar/blob/master/doc/tagbar.txt

64 Chapter 4. Configuration and customization

https://github.com/majutsushi/tagbar/blob/master/doc/tagbar.txt

Powerline, Release beta

4.2.3 Lister reference

Listers are special segment collections which allow to show some list of segments for each entity in the list of entities
(multiply their segments list by a list of entities). E.g. powerline.listers.vim.tablister presented with
powerline.segments.vim.tabnr andfile_name as segments will emit segments with buffer names
and tabpage numbers for each tabpage shown by vim.

Listers appear in configuration as irregular segments having segment_list as their type and segments key with
a list of segments (a bit more details in Themes section of configuration reference).

More information in Writing listers section.

Vim listers

powerline.listers.vim.bufferlister(show_unlisted=False)
List all buffers in segment_info format

Specifically generates a list of segment info dictionaries with buffer and bufnr keys set to buffer-specific
ones, window, winnr and window_id keys set to None.

Adds one of buf:, buf_nc:, buf_mod:, or buf_nc_mod prefix to all segment highlight groups.

Parameters show_unlisted (bool) – True if unlisted buffers should be shown as well. Current
buffer is always shown.

powerline.listers.vim.tablister()
List all tab pages in segment_info format

Specifically generates a list of segment info dictionaries with window, winnr, window_id, buffer and
bufnr keys set to tab-local ones and additional tabpage and tabnr keys.

Adds either tab: or tab_nc: prefix to all segment highlight groups.

Works best with vim-7.4 or later: earlier versions miss tabpage object and thus window objects are not available
as well.

Pdb listers

powerline.listers.pdb.frame_lister(maxframes=3, full_stack=False)
List all frames in segment_info format

Parameters

• full_stack (bool) – If true, then all frames in the stack are listed. Normally N first
frames are discarded where N is a number of frames present at the first invocation of the
prompt minus one.

• maxframes (int) – Maximum number of frames to display.

i3wm listers

powerline.listers.i3wm.output_lister()
List all outputs in segment_info format

powerline.listers.i3wm.workspace_lister(output=None, only_show=None)
List all workspaces in segment_info format

4.2. References 65

Powerline, Release beta

Sets the segment info values of workspace and output to the name of the i3 workspace and the xrandr
output respectively and the keys "visible", "urgent" and "focused" to a boolean indicating these
states.

Parameters

• only_show (list) – Specifies which workspaces to list. Valid entries are "visible",
"urgent" and "focused". If omitted or null all workspaces are listed.

• output (str) – May be set to the name of an X output. If specified, only workspaces on
that output are listed. Overrides automatic output detection by the lemonbar renderer and
bindings. Set to false to force all workspaces to be shown.

4.2.4 Selector functions

Selector functions are functions that return True or False depending on application state. They are used for ex-
clude_function and include_function segment options.

Available selectors

Common selectors

powerline.selectors.all_of()
Checks whether all of the given conditions are satisfied

Parameters condition (args) – Any argument passed to this selector will be interpreted as a
selector on its own that may have arguments.

powerline.selectors.any_of()
Checks whether any of the given conditions are satisfied

Parameters condition (kwargs) – Any argument passed to this selector will be interpreted as
a selector on its own that may have arguments.

powerline.selectors.mode(target_modes)
Returns True if the current mode to is contained in target_mode

Parameters target_modes (list) – The modes to filter.

powerline.selectors.common.time(target_start_time, target_end_time, time_zone=None,
time_format="%H:%M")

Returns True if the current time to is between target_start_time and target_end_time. Times are
to be specified in strftime-style format time_format.

Parameters

• target_start_time (string) – The (inclusive) start time.

• target_end_time (string) – The (exclusive) end time.

• time_format (string) – The strftime-style format to use for the given times.

• time_zone (string) – The time zone to use for the current time.

i3wm selectors

powerline.selectors.i3wm.channel_empty(channel_name)
Returns True while the specified channel is empty or does not exist

66 Chapter 4. Configuration and customization

Powerline, Release beta

Parameters channel_name (string) – The channel to check.

powerline.selectors.i3wm.channel_full(channel_name)
Returns True while the specified channel exists and is filled with any value.

Parameters channel_name (string) – The channel to check.

powerline.selectors.i3wm.channel_has_value(channel_name, value)
Returns True while the specified channel is filled with the specified value

Parameters

• channel_name (string) – The channel to check.

• value (string) – The value to check against.

powerline.selectors.i3wm.output(target_outputs)
Returns True if the current output rendered to is contained in target_output

Parameters target_outputs (list) – The outputs to filter.

Vim selectors

powerline.selectors.vim.single_tab(segment_info, mode)
Returns True if Vim has only one tab opened

4.2.5 Local configuration overrides

Depending on the application used it is possible to override configuration. Here is the list:

Vim overrides

Vim configuration can be overridden using the following options:

g:powerline_config_overrides Dictionary, recursively merged with contents of powerline/config.
json.

g:powerline_theme_overrides Dictionary mapping theme names to theme overrides, recursively merged
with contents of powerline/themes/vim/key.json. Note that this way some value (e.g. segment) in a
list cannot be redefined, only the whole list itself: only dictionaries are merged recursively.

g:powerline_config_paths Paths list (each path must be expanded, ~ shortcut is not supported). Points to
the list of directories which will be searched for configuration. When this option is present, none of the other
locations are searched.

g:powerline_no_python_error If this variable is set to a true value it will prevent Powerline from reporting
an error when loaded in a copy of vim without the necessary Python support.

g:powerline_use_var_handler Deprecated.

Warning: This variable is deprecated. Use log_file option in conjunction with powerline.vim.
VimVarHandler class and Vim config overrides variable. Using this is also the only variant to make
saving into the environment variable the only place where log is saved or save into different variable.

class powerline.vim.VimVarHandler(varname)
Vim-specific handler which emits messages to Vim global variables

4.2. References 67

Powerline, Release beta

Parameters varname (str) – Variable where

Powerline script overrides

Powerline script has a number of options controlling powerline behavior. Here VALUE always means “some JSON
object”.

-c KEY.NESTED_KEY=VALUE or --config-override=KEY.NESTED_KEY=VALUE Overrides options
from powerline/config.json. KEY.KEY2.KEY3=VALUE is a shortcut for KEY={"KEY2":
{"KEY3": VALUE}}. Multiple options (i.e. -c K1=V1 -c K2=V2) are allowed, result (in the example:
{"K1": V1, "K2": V2}) is recursively merged with the contents of the file.

If VALUE is omitted then corresponding key will be removed from the configuration (if it was present).

-t THEME_NAME.KEY.NESTED_KEY=VALUE or --theme-override=THEME_NAME.KEY.NESTED_KEY=VALUE
Overrides options from powerline/themes/ext/THEME_NAME.json. KEY.NESTED_KEY=VALUE
is processed like described above, {ext} is the first argument to powerline script. May be passed multiple
times.

If VALUE is omitted then corresponding key will be removed from the configuration (if it was present).

-p PATH or --config-path=PATH Sets directory where configuration should be read from. If present, no de-
fault locations are searched for configuration. No expansions are performed by powerline script itself, but -p
~/.powerline will likely be expanded by the shell to something like -p /home/user/.powerline.

Warning: Such overrides are suggested for testing purposes only. Use Environment variables overrides for other
purposes.

Environment variables overrides

All bindings that use POWERLINE_COMMAND environment variable support taking overrides from environment vari-
ables. In this case overrides should look like the following:

OVERRIDE='key1.key2.key3=value;key4.key5={"value":1};key6=true;key1.key7=10'

. This will be parsed into

{
"key1": {

"key2": {
"key3": "value"

},
"key7": 10,

},
"key4": {

"key5": {
"value": 1,

},
},
"key6": True,

}

. Rules:

1. Environment variable must form a semicolon-separated list of key-value pairs: key=value;key2=value2.

68 Chapter 4. Configuration and customization

Powerline, Release beta

2. Keys are always dot-separated strings that must not contain equals sign (as well as semicolon) or start with
an underscore. They are interpreted literally and create a nested set of dictionaries: k1.k2.k3 creates
{"k1":{"k2":{}}} and inside the innermost dictionary last key (k3 in the example) is contained with
its value.

3. Value may be empty in which case they are interpreted as an order to remove some value: k1.k2= will
form {"k1":{"k2":REMOVE_THIS_KEY}} nested dictionary where k2 value is a special value that tells
dictionary-merging function to remove k2 rather then replace it with something.

4. Value may be a JSON strings like {"a":1} (JSON dictionary), ["a",1] (JSON list), 1 or -1 (JSON number),
"abc" (JSON string) or true, false and null (JSON boolean objects and Null object from JSON).
General rule is that anything starting with a digit (U+0030 till U+0039, inclusive), a hyphenminus (U+002D), a
quotation mark (U+0022), a left curly bracket (U+007B) or a left square bracket (U+005B) is considered to be
some JSON object, same for exact values true, false and null.

5. Any other value is considered to be literal string: k1=foo:bar parses to {"k1": "foo:bar"}.

The following environment variables may be used for overrides according to the above rules:

POWERLINE_CONFIG_OVERRIDES Overrides values from powerline/config.json.

POWERLINE_THEME_OVERRIDES Overrides values from powerline/themes/ext/key.json. Top-level
key is treated as a name of the theme for which overrides are used: e.g. to disable cwd segment defined in
powerline/themes/shell/default.json one needs to use:

POWERLINE_THEME_OVERRIDES=default.segment_data.cwd.display=false

Additionally one environment variable is a usual colon-separated list of directories: POWERLINE_CONFIG_PATHS.
This one defines paths which will be searched for configuration. Empty paths in POWERLINE_CONFIG_PATHS are
ignored.

Note: Overrides from environment variables have lower priority then Powerline script overrides. Latter are suggested
for tests only.

Zsh/zpython overrides

Here overrides are controlled by similarly to the powerline script, but values are taken from zsh variables. Environment
variable overrides are also supported: if variable is a string this variant is used.

POWERLINE_CONFIG_OVERRIDES Overrides options from powerline/config.json. Should be a zsh as-
sociative array with keys equal to KEY.NESTED_KEY and values being JSON strings. Pair KEY.KEY1
VALUE is equivalent to {"KEY": {"KEY1": VALUE}}. All pairs are then recursively merged into one
dictionary and this dictionary is recursively merged with the contents of the file.

POWERLINE_THEME_OVERRIDES Overrides options from powerline/themes/shell/*.json. Should be
a zsh associative array with keys equal to THEME_NAME.KEY.NESTED_KEY and values being JSON strings.
Is processed like the above POWERLINE_CONFIG_OVERRIDES, but only subdictionaries for THEME_NAME
key are merged with theme configuration when theme with given name is requested.

POWERLINE_CONFIG_PATHS Sets directories where configuration should be read from. If present,
no default locations are searched for configuration. No expansions are performed by powerline
script itself, but zsh usually performs them on its own if variable without is set without quotes:
POWERLINE_CONFIG_PATHS=(~/example). In addition to arrays usual colon-separated “array” string
can be used: POWERLINE_CONFIG_PATHS=$HOME/path1:$HOME/path2.

4.2. References 69

Powerline, Release beta

Ipython overrides

Ipython overrides depend on ipython version. Before ipython-0.11 additional keyword arguments should be passed
to setup() function. After ipython-0.11 c.Powerline.KEY should be used. Supported KEY strings or keyword
argument names:

config_overrides Overrides options from powerline/config.json. Should be a dictionary that will be
recursively merged with the contents of the file.

theme_overrides Overrides options from powerline/themes/ipython/*.json. Should be a dictionary
where keys are theme names and values are dictionaries which will be recursively merged with the contents of
the given theme.

config_paths Sets directories where configuration should be read from. If present, no default locations are
searched for configuration. No expansions are performed thus paths starting with ~/ cannot be used: use
os.path.expanduser().

Prompt command

In addition to the above configuration options $POWERLINE_COMMAND environment variable can be used to tell shell
or tmux to use specific powerline implementation and $POWERLINE_CONFIG_COMMAND to tell zsh or tmux where
powerline-config script is located. This is mostly useful for putting powerline into different directory.

Note: $POWERLINE_COMMAND is always treated as one path in shell bindings, so path with spaces in it may be used.
To specify additional arguments one may use $POWERLINE_COMMAND_ARGS, but note that this variable exists for
testing purposes only and may be removed. One should use Environment variable overrides instead.

To disable prompt in shell, but still have tmux support or to disable tmux support environment variables
$POWERLINE_NO_{SHELL}_PROMPT and $POWERLINE_NO_{SHELL}_TMUX_SUPPORT can be used (sub-
stitute {SHELL} with the name of the shell (all-caps) that should be affected (e.g. BASH) or use all-inclusive SHELL
that will disable support for all shells). These variables have no effect after configuration script was sourced (in fish
case: after powerline-setup function was run). To disable specific feature support set one of these variables to
some non-empty value.

In order to keep shell prompt, but avoid launching Python twice to get unused above lines in tcsh
$POWERLINE_NO_TCSH_ABOVE or $POWERLINE_NO_SHELL_ABOVE variable should be set.

In order to remove additional space from the end of the right prompt in fish that was added in order to support multiline
prompt $POWERLINE_NO_FISH_ABOVE or $POWERLINE_NO_SHELL_ABOVE variable should be set.

PDB overrides

Like shell bindings PDB bindings take overrides from environment variables.

70 Chapter 4. Configuration and customization

CHAPTER 5

Developer guide

5.1 Writing segments

Each powerline segment is a callable object. It is supposed to be either a Python function or powerline.
segments.Segment class. As a callable object it should receive the following arguments:

Note: All received arguments are keyword arguments.

pl A powerline.PowerlineLogger instance. It must be used every time something needs to be logged.

segment_info A dictionary. It is only received if callable has powerline_requires_segment_info at-
tribute.

Refer to segment_info detailed description for further details.

create_watcher Function that will create filesystem watcher once called. Which watcher will be created exactly
is controlled by watcher configuration option.

And also any other argument(s) specified by user in args key (no additional arguments by default).

Note: For powerline-lint to work properly the following things may be needed:

1. If segment is a powerline.segments.Segment instance and used arguments are scattered over multiple
methods powerline.segments.Segment.argspecobjs() should be overridden in subclass to tell
powerline-lint which objects should be inspected for arguments.

2. If segment takes some arguments that are never listed, but accessed via kwargs.get() or previous function
cannot be used for whatever reason powerline.segments.Segment.additional_args() should
be overridden in subclass.

3. If user is expected to use one name for multiple segments which cannot be linked to the segment function
automatically by powerline-lint (e.g. because there are no instances of the segments in question in the default
configuration) powerline.lint.checks.register_common_name() function should be used.

71

Powerline, Release beta

Object representing segment may have the following attributes used by powerline:

powerline_requires_segment_info This attribute controls whether segment will receive segment_info
argument: if it is present argument will be received.

powerline_requires_filesystem_watcher This attribute controls whether segment will receive
create_watcher argument: if it is present argument will be received.

powerline_segment_datas This attribute must be a dictionary containing top_theme: segment_data
mapping where top_theme is any theme name (it is expected that all of the names from top-level themes list
are present) and segment_data is a dictionary like the one that is contained inside segment_data dictionary
in configuration. This attribute should be used to specify default theme-specific values for third-party segments:
powerline theme-specific values go directly to top-level themes.

startup This attribute must be a callable which accepts the following keyword arguments:

• pl: powerline.PowerlineLogger instance which is to be used for logging.

• shutdown_event: Event object which will be set when powerline will be shut down.

• Any arguments found in user configuration for the given segment (i.e. args key).

This function is called at powerline startup when using long-running processes (e.g. powerline in vim, in zsh
with libzpython, in ipython or in powerline daemon) and not called when powerline-render executable is
used (more specific: when powerline.Powerline constructor received true run_once argument).

shutdown This attribute must be a callable that accepts no arguments and shuts down threads and frees any other
resources allocated in startup method of the segment in question.

This function is not called when startup method is not called.

expand This attribute must be a callable that accepts the following keyword arguments:

• pl: powerline.PowerlineLogger instance which is to be used for logging.

• amount: integer number representing amount of display cells result must occupy.

Warning: “Amount of display cells” is not number of Unicode codepoints, string length, or byte
count. It is suggested that this function should look something like return (' ' * amount)
+ segment['contents'] where ' ' may be replaced with anything that is known to occupy
exactly one display cell.

• segment: segment dictionary.

• Any arguments found in user configuration for the given segment (i.e. args key).

It must return new value of contents key.

truncate Like expand function, but for truncating segments. Here amount means the number of display cells
which must be freed.

This function is called for all segments before powerline starts purging them to free space.

This callable object should may return either a string (unicode in Python2 or str in Python3, not str in Python2
or bytes in Python3) object or a list of dictionaries. String object is a short form of the following return value:

[{
'contents': original_return,
'highlight_groups': [segment_name],

}]

72 Chapter 5. Developer guide

Powerline, Release beta

Returned list is a list of segments treated independently, except for draw_inner_divider key.

All keys in segments returned by the function override those obtained from configuration and have the same meaning.

Detailed description of used dictionary keys:

contents Text displayed by segment. Should be a unicode (Python2) or str (Python3) instance.

literal_contents Text that needs to be output literally (i.e. without passing through powerline.
renderer.strwidth() to determine length, through powerline.renderer.escape() to es-
cape special characters and through powerline.renderer.hl() to highlight it). Should be a tu-
ple (contents_length, contents) where contents_length is an integer and contents is a
unicode (Python2) or str (Python3) instance.

If this key is present and its second value is true then other contents keys (contents, after, before) will be ignored.

Note: If target is inclusion of the segment in powerline upstream all segment functions that output only sub-
segments with literal_contents key must contain the following string in documentation:

No highlight groups are used (literal segment).

String must be present on the separate line.

draw_hard_divider, draw_soft_divider, draw_inner_divider Determines whether given divider
should be drawn. All have the same meaning as the similar keys in configuration (draw_inner_divider).

highlight_groups Determines segment highlighting. Refer to themes documentation for more details.

Defaults to the name of the segment.

Note: If target is inclusion of the segment in powerline upstream all used highlighting groups must be specified
in the segment documentation in the form:

Highlight groups used: ``g1``[or ``g2``]*[, ``g3`` (gradient)[or ``g4``]*]*.

I.e. use:

Highlight groups used: ``foo_gradient`` (gradient) or ``foo``, ``bar``.

to specify that the segment uses either foo_gradient group or foo group and bar group meaning that
powerline-lint will check that at least one of the first two groups is defined (and if foo_gradient is
defined it must use at least one gradient color) and third group is defined as well.

All groups must be specified on one line.

divider_highlight_group Determines segment divider highlight group. Only applicable for soft dividers:
colors for hard dividers are determined by colors of adjacent segments.

Note: If target is inclusion of the segment in powerline upstream used divider highlight group must be specified
in the segment documentation in the form:

Divider highlight group used: ``group``.

This text must not wrap and all divider highlight group names are
supposed to end with ``:divider``: e.g. ``cwd:divider``.

5.1. Writing segments 73

Powerline, Release beta

gradient_level First and the only key that may not be specified in user configuration. It determines which color
should be used for this segment when one of the highlighting groups specified by highlight_groups was defined
to use the color gradient.

This key may have any value from 0 to 100 inclusive, value is supposed to be an int or float instance.

No error occurs if segment has this key, but no used highlight groups use gradient color.

_* Keys starting with underscore are reserved for powerline and must not be returned.

__* Keys starting with two underscores are reserved for the segment functions, specifically for expand function.

5.1.1 Segment dictionary

Segment dictionary contains the following keys:

• All keys returned by segment function (if it was used).

• All of the following keys:

name Segment name: value of the name key or function name (last component of the function key). May be
None.

type Segment type. Always represents actual type and is never None.

highlight_groups, divider_highlight_group Used highlight groups. May be None.

highlight_group_prefix If this key is present then given prefix will be prepended to each highlight
group (both regular and divider) used by this segment in a form {prefix}:{group} (note the colon).
This key is mostly useful for segment listers.

before, after Value of before or after configuration options. May be None as well as an empty string.

contents_func Function used to get segment contents. May be None.

contents Actual segment contents, excluding dividers and before/after. May be None.

priority Segment priority. May be None for no priority (such segments are always shown).

draw_soft_divider, draw_hard_divider, draw_inner_divider Divider control flags.

side Segment side: right or left.

display_condition Contains function that takes three position parameters: powerline.
PowerlineLogger instance, segment_info dictionary and current mode and returns either True
or False to indicate whether particular segment should be processed.

This key is constructed based on exclude_/include_modes keys and exclude_/include_function keys.

width, align Width and align options. May be None.

expand, truncate Partially applied expand or truncate function. Accepts pl, amount and segment
positional parameters, keyword parameters from args key were applied.

startup Partially applied startup function. Accepts pl and shutdown_event positional parameters, key-
word parameters from args key were applied.

shutdown Shutdown function. Accepts no argument.

74 Chapter 5. Developer guide

Powerline, Release beta

5.1.2 Segments layout

Powerline segments are all located in one of the powerline.segments submodules. For extension-specific
segments powerline.segments.{ext} module should be used (e.g. powerline.segments.shell), for
extension-agnostic there is powerline.segments.common.

Plugin-specific segments (currently only those that are specific to vim plugins) should live in powerline.
segments.{ext}.plugin.{plugin_name}: e.g. powerline.segments.vim.plugin.gundo.

5.1.3 Segment information used in various extensions

Each segment_info value should be a dictionary with at least the following keys:

environ Current environment, may be an alias to os.environ. Is guaranteed to have __getitem__ and get
methods and nothing more.

Warning: os.environ must not ever be used:

• If segment is run in the daemon this way it will get daemon’s environment which is not correct.

• If segment is run in Vim or in zsh with libzpython os.environ will contain Vim or zsh environ at
the moment Python interpreter was loaded.

getcwd Function that returns current working directory being called with no arguments. os.getcwd must not be
used for the same reasons the use of os.environ is forbidden, except that current working directory is valid
in Vim and zsh (but not in daemon).

home Current home directory. May be false.

Vim

Vim segment_info argument is a dictionary with the following keys:

window vim.Window object. vim.current.window or vim.windows[number - 1] may be used to
obtain such object. May be a false object, in which case any of this object’s properties must not be used.

winnr Window number. Same as segment_info['window'].number assuming Vim is new enough for
vim.Window object to have number attribute.

window_id Internal powerline window id, unique for each newly created window. It is safe to assume that this ID
is hashable and supports equality comparison, but no other assumptions about it should be used. Currently uses
integer numbers incremented each time window is created.

buffer vim.Buffer object. One may be obtained using vim.current.buffer,
segment_info['window'].buffer or vim.buffers[some_number]. Note that in the latter
case depending on vim version some_number may be bufnr or the internal Vim buffer index which is not
buffer number. For this reason to get vim.Buffer object other then stored in segment_info dictionary
iteration over vim.buffers and checking their number attributes should be performed.

bufnr Buffer number.

tabpage vim.Tabpage object. One may be obtained using vim.current.tabpage or vim.
tabpages[number - 1]. May be a false object, in which case no object’s properties can be used.

tabnr Tabpage number.

mode Current mode.

5.1. Writing segments 75

Powerline, Release beta

encoding Value of &encoding from the time when powerline was initialized. It should be used to convert return
values.

Note: Segment generally should not assume that it is run for the current window, current buffer or current tabpage.
“Current window” and “current buffer” restrictions may be ignored if window_cached decorator is used, “current
tabpage” restriction may be safely ignored if segment is not supposed to be used in tabline.

Warning: Powerline is being tested with vim-7.0.112 (some minor sanity check) and latest Vim. This means that
most of the functionality like vim.Window.number, vim.*.vars, vim.*.options or even dir(vim
object) should be avoided in segments that want to be included in the upstream.

Shell

args Parsed shell arguments: a argparse.Namespace object. Check out powerline-render --help for
the list of all available arguments. Currently it is expected to contain at least the following attributes:

last_exit_code Exit code returned by last shell command. Is either one integer, sig{name} or
sig{name}+core (latter two are only seen in rc shell).

last_pipe_status List of exit codes returned by last programs in the pipe or some false object. Only
available in zsh and rc. Is a list of either integers, sig{name} or sig{name}+core (latter two are
only seen in rc shell).

jobnum Number of background jobs.

renderer_arg Dictionary containing some keys that are additional arguments used by shell bindings. This
attribute must not be used directly: all arguments from this dictionary are merged with segment_info
dictionary. Known to have at least the following keys:

client_id Identifier unique to one shell instance. Is used to record instance state by powerline daemon.
In tmux this is the same as pane_id.

It is not guaranteed that existing client ID will not be retaken when old shell with this ID quit: usually
process PID is used as a client ID.

It is also not guaranteed that client ID will be process PID, number or something else at all. It is
guaranteed though that client ID will be some hashable object which supports equality comparison.

local_theme Local theme that will be used by shell. One should not rely on the existence of this key.

pane_id Identifier unique to each tmux pane. Is always an integer, optional. Obtained by using tmux
display -p '#D', then all leading spaces and per cent signs are stripped and the result is con-
verted into an integer.

Other keys, if any, are specific to segments.

Ipython

ipython Some object which has prompt_count attribute. Currently it is guaranteed to have only this attribute.

Attribute prompt_count contains the so-called “history count” (equivalent to \N in in_template).

76 Chapter 5. Developer guide

Powerline, Release beta

Pdb

pdb Currently active pdb.Pdb instance.

curframe Frame which will be run next. Note: due to the existence of powerline.listers.pdb.
frame_lister() one must not use segment_info['pdb'].curframe.

initial_stack_length Equal to the length of pdb.Pdb.stack at the first invocation of the prompt decre-
mented by one.

i3wm

mode Currently active i3 mode (as a string).

output xrandr output name currently drawing to. Currently only available in lemonbar bindings.

workspace

the i3-ipc workspace object corresponding to this workspace. Contains string attributes name and
output, as well as boolean attributes for visible, urgent and focused. Currently only

provided by the powerline.listers.i3wm.workspace_lister() lister.

5.1.4 Segment class

class powerline.segments.Segment
Base class for any segment that is not a function

Required for powerline.lint.inspect to work properly: it defines methods for omitting existing or adding new
arguments.

Note: Until python-3.4 inspect.getargspec does not support querying callable classes for argu-
ments of their __call__ method, requiring to use this method directly (i.e. before 3.4 you should write
getargspec(obj.__call__) in place of getargspec(obj)).

static additional_args()
Returns a list of (additional argument name[, default value]) tuples.

argspecobjs()
Return a list of valid arguments for inspect.getargspec

Used to determine function arguments.

omitted_args(name, method)
List arguments which should be omitted

Returns a tuple with indexes of omitted arguments.

5.1.5 PowerlineLogger class

class powerline.PowerlineLogger(use_daemon_threads, logger, ext)
Proxy class for logging.Logger instance

It emits messages in format {ext}:{prefix}:{message} where

{ext} is a used powerline extension (e.g. “vim”, “shell”, “ipython”).

5.1. Writing segments 77

Powerline, Release beta

{prefix} is a local prefix, usually a segment name.

{message} is the original message passed to one of the logging methods.

Each of the methods (critical, exception, info, error, warn, debug) expects to receive message in
an str.format format, not in printf-like format.

Log is saved to the location specified by user.

critical(msg, *args, **kwargs)

debug(msg, *args, **kwargs)

error(msg, *args, **kwargs)

exception(msg, *args, **kwargs)

info(msg, *args, **kwargs)

warn(msg, *args, **kwargs)

5.2 Writing listers

Listers provide a way to show some segments multiple times: once per each entity (buffer, tabpage, etc) lister knows.
They are functions which receive the following arguments:

pl A powerline.PowerlineLogger class instance. It must be used for logging.

segment_info Base segment info dictionary. Lister function or class must have
powerline_requires_segment_info to receive this argument.

Warning: Listers are close to useless if they do not have access to this argument.

Refer to segment_info detailed description for further details.

draw_inner_divider If False (default) soft dividers between segments in the listed group will not be drawn
regardless of actual segment settings. If True they will be drawn, again regardless of actual segment settings.
Set it to None in order to respect segment settings.

And also any other argument(s) specified by user in args key (no additional arguments by default).

Listers must return a sequence of pairs. First item in the pair must contain a segment_info dictionary specific to
one of the listed entities.

Second item must contain another dictionary: it will be used to modify the resulting segment. In addition to usual keys
that describe segment the following keys may be present (it is advised that only the following keys will be used):

priority_multiplier Value (usually a float) used to multiply segment priority. It is useful for finer-grained
controlling which segments disappear first: e.g. when listing tab pages make first disappear directory names of
the tabpages which are most far away from current tabpage, then (when all directory names disappeared) buffer
names. Check out existing listers implementation in powerline/listers/vim.py.

5.3 Local themes

From the user point of view local themes are the regular themes with a specific scope where they are applied (i.e.
specific vim window or specific kind of prompt). Used themes are defined in local_themes key.

78 Chapter 5. Developer guide

Powerline, Release beta

5.3.1 Vim local themes

Vim is the only available extension that has a wide variaty of options for local themes. It is the only extension where
local theme key refers to a function as described in local_themes value documentation.

This function always takes a single value named matcher_info which is the same dictionary as segment_info
dictionary. Unlike segments it takes this single argument as a positional argument, not as a keyword one.

Matcher function should return a boolean value: True if theme applies for the given matcher_info dictionary or
False if it is not. When one of the matcher functions returns True powerline takes the corresponding theme at uses
it for the given window. Matchers are not tested in any particular order.

In addition to local_themes configuration key developer of some plugin which wishes to support powerline with-
out including his code in powerline tree may use powerline.vim.VimPowerline.add_local_theme()
method. It accepts two arguments: matcher name (same as in local_themes) and dictionary with theme. This dic-
tionary is merged with top theme and powerline/themes/vim/__main__.json. Note that if user already
specified the matcher in his configuration file KeyError is raised.

5.3.2 Other local themes

Except for Vim only IPython and shells have local themes. Unlike Vim these themes are names with no special
meaning (they do not refer to or cause loading of any Python functions):

Exten-
sion

Theme
name

Description

Shell continua-
tion

Shown for unfinished command (unclosed quote, unfinished cycle).

select Shown for select command available in some shells.
IPython in2 Continuation prompt: shown for unfinished (multiline) expression, unfinished class or

function definition.
out Displayed before the result.
rewrite Displayed before the actually executed code when autorewrite IPython feature is

enabled.

5.4 Creating new powerline extension

Powerline extension is a code that tells powerline how to highlight and display segments in some set of applications.
Specifically this means

1. Creating a powerline.Powerline subclass that knows how to obtain local configuration overrides. It also
knows how to load local themes, but not when to apply them.

Instance of this class is the only instance that interacts directly with bindings code, so it has a proxy
powerline.Powerline.render() and powerline.Powerline.shutdown() methods and other
methods which may be useful for bindings.

This subclass must be placed directly in powerline directory (e.g. in powerline/vim.py) and named
like VimPowerline (version of the file name without directory and extension and first capital letter +
Powerline). There is no technical reason for naming classes like this.

2. Creating a powerline.renderer.Renderer subclass that knows how to highlight a segment or reset
highlighting to the default value (only makes sense in prompts). It is also responsible for selecting local themes
and computing text width.

5.4. Creating new powerline extension 79

Powerline, Release beta

This subclass must be placed directly in powerline/renderers directory (for powerline extensions devel-
oped for a set of applications use powerline/renderers/ext/*.py) and named like ExtRenderer
or AppPromptRenderer. For technical reasons the class itself must be referenced in renderer module
attribute thus allowing only one renderer per one module.

3. Creating an extension bindings. These are to be placed in powerline/bindings/ext and may contain
virtually anything which may be required for powerline to work inside given applications, assuming it does not
fit in other places.

5.4.1 Powerline class

class powerline.Powerline(*args, **kwargs)
Main powerline class, entrance point for all powerline uses. Sets powerline up and loads the configuration.

Parameters

• ext (str) – extension used. Determines where configuration files will searched and
what renderer module will be used. Affected: used ext dictionary from powerline/
config.json, location of themes and colorschemes, render module (powerline.
renders.{ext}).

• renderer_module (str) – Overrides renderer module (defaults to ext). Should
be the name of the package imported like this: powerline.renderers.
{render_module}. If this parameter contains a dot powerline.renderers. is not
prepended. There is also a special case for renderers defined in top-level modules: foo.
(note: dot at the end) tries to get renderer from module foo (because foo (without dot)
tries to get renderer from module powerline.renderers.foo). When .foo (with
leading dot) variant is used renderer_module will be powerline.renderers.
{ext}{renderer_module}.

• run_once (bool) – Determines whether render()method will be run only once during
python session.

• logger (Logger) – If present no new logger will be created and the provided logger will
be used.

• use_daemon_threads (bool) – When creating threads make them daemon ones.

• shutdown_event (Event) – Use this Event as shutdown_event instead of creating new
event.

• config_loader (ConfigLoader) – Instance of the class that manages (re)loading of
the configuration.

create_logger()
Create logger

This function is used to create logger unless it was already specified at initialization.

Returns

Three objects:

1. logging.Logger instance.

2. PowerlineLogger instance.

3. Function, output of gen_module_attr_getter().

80 Chapter 5. Developer guide

Powerline, Release beta

create_renderer(load_main=False, load_colors=False, load_colorscheme=False,
load_theme=False)

(Re)create renderer object. Can be used after Powerline object was successfully initialized. If any of the
below parameters except load_main is True renderer object will be recreated.

Parameters

• load_main (bool) – Determines whether main configuration file (config.json)
should be loaded. If appropriate configuration changes implies load_colorscheme
and load_theme and recreation of renderer object. Won’t trigger recreation if only
unrelated configuration changed.

• load_colors (bool) – Determines whether colors configuration from colors.
json should be (re)loaded.

• load_colorscheme (bool) – Determines whether colorscheme configuration should
be (re)loaded.

• load_theme (bool) – Determines whether theme configuration should be reloaded.

static do_setup()
Function that does initialization

Should be overridden by subclasses. May accept any number of regular or keyword arguments.

force_update(*args, **kwargs)
Force a segment to update itself.

static get_config_paths()
Get configuration paths.

Should be overridden in subclasses in order to provide a way to override used paths.

Returns list of paths

static get_encoding()
Get encoding used by the current application

Usually returns encoding of the current locale.

static get_local_themes(local_themes)
Get local themes. No-op here, to be overridden in subclasses if required.

Parameters local_themes (dict) – Usually accepts {matcher_name :
theme_name}. May also receive None in case there is no local_themes configura-
tion.

Returns anything accepted by self.renderer.get_theme and processable by self.
renderer.add_local_theme. Renderer module is determined by __init__ argu-
ments, refer to its documentation.

init(ext, renderer_module=None, run_once=False, logger=None, use_daemon_threads=True, shut-
down_event=None, config_loader=None)

Do actual initialization.

__init__ function only stores the arguments and runs this function. This function exists for powerline to be
able to reload itself: it is easier to make __init__ store arguments and call overriddable init than tell
developers that each time they override Powerline.__init__ in subclasses they must store actual arguments.

load_colors_config()
Get colorscheme.

Returns dictionary with colors configuration.

5.4. Creating new powerline extension 81

Powerline, Release beta

load_colorscheme_config(name)
Get colorscheme.

Parameters name (str) – Name of the colorscheme to load.

Returns dictionary with colorscheme configuration.

load_config(cfg_path, cfg_type)
Load configuration and setup watches

Parameters

• cfg_path (str) – Path to the configuration file without any powerline configuration
directory or .json suffix.

• cfg_type (str) – Configuration type. May be one of main (for config.json file),
colors, colorscheme, theme.

Returns dictionary with loaded configuration.

load_main_config()
Get top-level configuration.

Returns dictionary with top-level configuration.

load_theme_config(name)
Get theme configuration.

Parameters name (str) – Name of the theme to load.

Returns dictionary with theme configuration

reload()
Reload powerline after update.

Should handle most (but not all) powerline updates.

Purges out all powerline modules and modules imported by powerline for segment and matcher functions.
Requires defining setup function that updates reference to main powerline object.

Warning: Not guaranteed to work properly, use it at your own risk. It may break your python code.

render(*args, **kwargs)
Update/create renderer if needed and pass all arguments further to self.renderer.render().

render_above_lines(*args, **kwargs)
Like .render(), but for self.renderer.render_above_lines()

setup(*args, **kwargs)
Setup the environment to use powerline.

Must not be overridden by subclasses. This one only saves setup arguments for reload() method and
calls do_setup().

setup_components(components)
Run component-specific setup

Parameters components (set) – Set of the enabled components or None.

Should be overridden by subclasses.

shutdown(set_event=True)
Shut down all background threads.

82 Chapter 5. Developer guide

Powerline, Release beta

Parameters set_event (bool) – Set shutdown_event and call renderer.shutdown
which should shut down all threads. Set it to False unless you are exiting an application.

If set to False this does nothing more then resolving reference cycle powerline →
config_loader → bound methods → powerline by unsubscribing from con-
fig_loader events.

update_renderer()
Updates/creates a renderer if needed.

5.4.2 Renderer class

class powerline.renderer.Renderer(theme_config, local_themes, theme_kwargs, pl, ambi-
width=1, **options)

Object that is responsible for generating the highlighted string.

Parameters

• theme_config (dict) – Main theme configuration.

• local_themes – Local themes. Is to be used by subclasses from .get_theme()
method, base class only records this parameter to a .local_themes attribute.

• theme_kwargs (dict) – Keyword arguments for Theme class constructor.

• pl (PowerlineLogger) – Object used for logging.

• ambiwidth (int) – Width of the characters with east asian width unicode attribute equal
to A (Ambigious).

• options (dict) – Various options. Are normally not used by base renderer, but all op-
tions are recorded as attributes.

do_force_update(mode, segment_name, theme, segment_info=None, *args, **kwargs)
Force the first segment with name segment_name to update its content. May silently render segment to
obtain their payload_name. Only works for ThreadedSegments

do_render(mode, width, side, line, output_raw, output_width, segment_info, theme)
Like Renderer.render(), but accept theme in place of matcher_info

escape(string)
Method that escapes segment contents.

force_update(mode, segment_name, matcher_info, segment_info=None, *args, **kwargs)
Force the first segment with name segment_name to update its content.

get_segment_info(segment_info, mode)
Get segment information.

Must return a dictionary containing at least home, environ and getcwd keys (see documentation
for segment_info attribute). This implementation merges segment_info dictionary passed to .
render() method with .segment_info attribute, preferring keys from the former. It also replaces
getcwd key with function returning segment_info['environ']['PWD'] in case PWD variable is
available.

Parameters segment_info (dict) – Segment information that was passed to .render()
method.

Returns dict with segment information.

get_theme(matcher_info)
Get Theme object.

5.4. Creating new powerline extension 83

Powerline, Release beta

Is to be overridden by subclasses to support local themes, this variant only returns .theme attribute.

Parameters matcher_info – Parameter matcher_info that .render() method re-
ceived. Unused.

hl(escaped_contents, fg=None, bg=None, attrs=None, *args, **kwargs)
Output highlighted chunk.

This implementation just outputs hlstyle() joined with escaped_contents.

static hl_join()
Join a list of rendered segments into a resulting string

This method exists to deal with non-string render outputs, so segments may actually be not an iterable with
strings.

Parameters segments (list) – Iterable containing rendered segments. By “rendered seg-
ments” Renderer.hl() output is meant.

Returns Results of joining these segments.

hlstyle(fg=None, bg=None, attrs=None, *args, **kwargs)
Output highlight style string.

Assuming highlighted string looks like {style}{contents} this method should output {style}. If
it is called without arguments this method is supposed to reset style to its default.

render(mode=None, width=None, side=None, line=0, output_raw=False, output_width=False, seg-
ment_info=None, matcher_info=None)

Render all segments.

When a width is provided, low-priority segments are dropped one at a time until the line is shorter than
the width, or only segments with a negative priority are left. If one or more segments with "width":
"auto" are provided they will fill the remaining space until the desired width is reached.

Parameters

• mode (str) – Mode string. Affects contents (colors and the set of segments) of rendered
string.

• width (int) – Maximum width text can occupy. May be exceeded if there are too much
non-removable segments.

• side (str) – One of left, right, center. Determines which side will be rendered.
If not present all sides are rendered.

• line (int) – Line number for which segments should be obtained. Is counted from zero
(botmost line).

• output_raw (bool) – Changes the output: if this parameter is True then in place of
one string this method outputs a pair (colored_string, colorless_string).

• output_width (bool) – Changes the output: if this parameter is True then in place
of one string this method outputs a pair (colored_string, string_width).
Returns a three-tuple if output_raw is also True: (colored_string,
colorless_string, string_width).

• segment_info (dict) – Segment information. See also get_segment_info()
method.

• matcher_info – Matcher information. Is processed in get_segment_info()
method.

84 Chapter 5. Developer guide

Powerline, Release beta

render_above_lines(**kwargs)
Render all segments in the {theme}/segments/above list

Rendering happens in the reversed order. Parameters are the same as in .render() method.

Yield rendered line.

segment_info = {'environ': <environ dictionary>, 'getcwd': <built-in function getcwd>, 'home': <home directory>}
Basic segment info

Is merged with local segment information by get_segment_info() method. Keys:

environ Object containing environment variables. Must define at least the following methods: .
__getitem__(var) that raises KeyError in case requested environment variable is not present,
.get(var, default=None) that works like dict.get and be able to be passed to Popen.

getcwd Function that returns current working directory. Will be called without any arguments, should
return unicode or (in python-2) regular string.

home String containing path to home directory. Should be unicode or (in python-2) regular string or
None.

shutdown()
Prepare for interpreter shutdown. The only job it is supposed to do is calling .shutdown() method for
all theme objects. Should be overridden by subclasses in case they support local themes.

strwidth(s)
Function that returns string width.

Is used to calculate the place given string occupies when handling width argument to .render()
method. Must take East Asian width into account.

Parameters string (unicode) – String whose width will be calculated.

Returns unsigned integer.

5.5 Tips and tricks for powerline developers

5.5.1 Profiling powerline in Vim

Given that current directory is the root of the powerline repository the following command may be used:

vim --cmd 'let g:powerline_pyeval="powerline#debug#profile_pyeval"' \
--cmd 'set rtp=powerline/bindings/vim' \
-c 'runtime! plugin/powerline.vim' \
{other arguments if needed}

After some time run :WriteProfiling {filename}Vim command. Currently this only works with recent Vim
and python-2*. It should be easy to modify powerline/bindings/vim/autoload/powerline/debug.
vim to suit other needs.

5.5. Tips and tricks for powerline developers 85

Powerline, Release beta

86 Chapter 5. Developer guide

CHAPTER 6

Troubleshooting

6.1 System-specific issues

6.1.1 Troubleshooting on Linux

I can’t see any fancy symbols, what’s wrong?

• Make sure that you’ve configured gvim or your terminal emulator to use a patched font.

• You need to set your LANG and LC_* environment variables to a UTF-8 locale (e.g. LANG=en_US.utf8).
Consult your Linux distro’s documentation for information about setting these variables correctly.

• Make sure that vim is compiled with the --with-features=big flag.

• If you’re using rxvt-unicode make sure that it’s compiled with the --enable-unicode3 flag.

• If you’re using xterm make sure you have told it to work with unicode. You may need -u8 command-line
argument, uxterm shell wrapper that is usually shipped with xterm for this or xterm*utf8 property set to
1 or 2 in ~/.Xresources (applied with xrdb). Note that in case uxterm is used configuration is done via
uxterm*... properties and not xterm*....

In any case the only absolute requirement is launching xterm with UTF-8 locale.

• If you are using bitmap font make sure that /etc/fonts/conf.d/70-no-bitmaps.conf does not exist.
If it does check out your distribution documentation to find a proper way to remove it (so that it won’t reappear
after update). E.g. in Gentoo this is:

eselect fontconfig disable 70-no-bitmaps.conf

(currently this only removes the symlink from /etc/fonts/conf.d). Also check out that no other fontcon-
fig file does not have rejectfont tag that tells fontconfig to disable bitmap fonts (they are referenced as not
scalable).

87

Powerline, Release beta

The fancy symbols look a bit blurry or “off”!

• Make sure that you have patched all variants of your font (i.e. both the regular and the bold font files).

I am seeing strange blocks in place of playing/paused/stopped signs

If you are using powerline_unicode7 top-level theme then symbols for player segments are taken from
U+23F4–U+23FA range which is missing from most fonts. You may fix the issue by using Symbola24 font (or any
other font which contains these glyphs).

If your terminal emulator is using fontconfig library then you can create a fontconfig configuration file with the fol-
lowing contents:

<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">

<fontconfig>
<alias>

<family>Terminus</family>
<prefer><family>Symbola</family></prefer>

</alias>
</fontconfig>

(replace Terminus with the name of the font you are using). Exact sequence of actions you need to
perform is different across distributions, most likely it will work if you put the above xml into /etc/
fonts/conf.d/99-prefer-symbola.conf. On Gentoo you need to put it into /etc/fonts/conf.d/
99-prefer-symbola.conf and run:

eselect fontconfig enable 99-prefer-symbola

.

Warning: This answer is only applicable if you use powerline_unicode7 theme or if you configured
powerline to use the same characters yourself.

6.1.2 Troubleshooting on OS X

I can’t see any fancy symbols, what’s wrong?

• If you’re using iTerm2, please update to this revision25 or newer. Also make sure that
Preferences>Profiles>Text>Non-ASCII Font is the same as your main Font.

• You need to set your LANG and LC_* environment variables to a UTF-8 locale (e.g. LANG=en_US.utf8).
Consult your Linux distro’s documentation for information about setting these variables correctly.

The colors look weird in the default OS X Terminal app!

• The arrows may have the wrong colors if you have changed the “minimum contrast” slider in the color tab of
your OS X settings.

24 http://users.teilar.gr/~g1951d/
25 https://github.com/gnachman/iTerm2/commit/8e3ad6dabf83c60b8cf4a3e3327c596401744af6

88 Chapter 6. Troubleshooting

http://users.teilar.gr/~g1951d/
https://github.com/gnachman/iTerm2/commit/8e3ad6dabf83c60b8cf4a3e3327c596401744af6

Powerline, Release beta

• The default OS X Terminal app is known to have some issues with the Powerline colors. Please use another
terminal emulator. iTerm2 should work fine.

The colors look weird in iTerm2!

• The arrows may have the wrong colors if you have changed the “minimum contrast” slider in the color tab of
your OS X settings.

• If you’re using transparency, check “Keep background colors opaque”.

Statusline is getting wrapped to the next line in iTerm2

• Turn off “Treat ambigious-width characters as double width” in Preferences –> Text.

• Alternative: remove fancy dividers (they suck in this case), set ambiwidth to 2.

I receive a NameError when trying to use Powerline with MacVim!

• Please install MacVim using this command:

brew install macvim --env-std --override-system-vim

Then install Powerline locally with pip install --user, or by running these commands in the
powerline directory:

./setup.py build

./setup.py install --user

I receive an ImportError when trying to use Powerline on OS X!

• This is caused by an invalid sys.path when using system vim and system Python. Please try to select another
Python distribution:

sudo port select python python27-apple

• See issue #3926 for a discussion and other possible solutions for this issue.

I receive “FSEventStreamStart: register_with_server: ERROR” with status_colors

This is a known27 libuv issue that happens if one is trying to watch too many files. It should be fixed in libuv-0.12.
Until then it is suggested to either disable status_colors (from powerline.segments.common.vcs.
branch()) or choose stat-based watcher (will have effectively the same effect as disabling status_colors).

6.2 Common issues

6.2.1 After an update something stopped working

Assuming powerline was working before update and stopped only after there are two possible explanations:

26 https://github.com/powerline/powerline/issues/39
27 https://github.com/joyent/node/issues/5463

6.2. Common issues 89

https://github.com/powerline/powerline/issues/39
https://github.com/joyent/node/issues/5463

Powerline, Release beta

• You have more then one powerline installation (e.g. pip and Vundle installations) and you have updated only
one.

• Update brought some bug to powerline.

In the second case you, of course, should report the bug to powerline bug tracker28. In the first you should make sure
you either have only one powerline installation or you update all of them simultaneously (beware that in the second
case you are not supported). To diagnose this problem you may do the following:

1) If this problem is observed within the shell make sure that

python -c 'import powerline; print (powerline.__file__)'

which should report something like /usr/lib64/python2.7/site-packages/powerline/
__init__.pyc (if powerline is installed system-wide) or /home/USER/.../powerline/__init__.
pyc (if powerline was cloned somewhere, e.g. in /home/USER/.vim/bundle/powerline) reports the
same location you use to source in your shell configuration: in first case it should be some location in /usr
(e.g. /usr/share/zsh/site-contrib/powerline.zsh), in the second it should be something like
/home/USER/.../powerline/bindings/zsh/powerline.zsh. If this is true it may be a power-
line bug, but if locations do not match you should not report the bug until you observe it on configuration where
locations do match.

2) If this problem is observed specifically within bash make sure that you clean $POWERLINE_COMMAND and
$PROMPT_COMMAND environment variables on startup or, at least, that it was cleaned after update. While
different $POWERLINE_COMMAND variable should not cause any troubles most of time (and when it will cause
troubles are rather trivial) spoiled $PROMPT_COMMAND may lead to strange error messages or absence of exit
code reporting.

These are the sources which may keep outdated environment variables:

• Any command launched from any application inherits its environment unless callee explicitly requests to
use specific environment. So if you did exec bash after update it is rather unlikely to fix the problem.

• More interesting: tmux is a client-server application, it keeps one server instance per one user. You proba-
bly already knew that, but there is an interesting consequence: once tmux server was started it inherits its
environment from the callee and keeps it forever (i.e. until server is killed). This environment is then in-
herited by applications you start with tmux new-session. Easiest solution is to kill tmux with tmux
kill-server, but you may also use tmux set-environment -u to unset offending variables.

• Also check When using z powerline shows wrong number of jobs: though this problem should not be seen
after update only, it contains another example of $PROMPT_COMMAND spoiling results.

3) If this problem is observed within the vim instance you should check out the output of the following Ex mode
commands

python import powerline as pl ; print (pl.__file__)
python3 import powerline as pl ; print (pl.__file__)

One (but not both) of them will most likely error out, this is OK. The same rules apply as in the 1), but in
place of sourcing you should seek for the place where you modify runtimepath vim option. If you install
powerline using VAM29 then no explicit modifications of runtimpath were performed in your vimrc (runtimepath
is modified by VAM in this case), but powerline will be placed in plugin_root_dir/powerline where
{plugin_root_dir} is stored in VAM settings dictionary: do echo g:vim_addon_manager.plugin_root_dir.

There is a hint if you want to place powerline repository somewhere, but still make powerline package importable
anywhere: use

28 https://github.com/powerline/powerline
29 https://github.com/MarcWeber/vim-addon-manager

90 Chapter 6. Troubleshooting

https://github.com/powerline/powerline
https://github.com/MarcWeber/vim-addon-manager

Powerline, Release beta

pip install --user --editable path/to/powerline

6.3 Tmux/screen-related issues

6.3.1 I’m using tmux and Powerline looks like crap, what’s wrong?

• You need to tell tmux that it has 256-color capabilities. Add this to your .tmux.conf to solve this issue:

set -g default-terminal "screen-256color"

• If you’re using iTerm2, make sure that you have enabled the setting Set locale variables automatically in Profiles
→ Terminal → Environment.

• Make sure tmux knows that terminal it is running in support 256 colors. You may tell it tmux by using -2 option
when launching it.

6.3.2 I’m using tmux/screen and Powerline is colorless

• If the above advices do not help, then you need to disable term_truecolor.

• Alternative: set additional_escapes to "tmux" or "screen". Note that it is known to work perfectly in
screen, but in tmux it may produce ugly spaces.

Warning: Both tmux and screen are not resending sequences escaped in such a way. Thus even though
additional escaping will work for the last shown prompt, highlighting will eventually go away when tmux or
screen will redraw screen for some reason.

E.g. in screen it will go away when you used copy mode and prompt got out of screen and in tmux it will go
away immediately after you press <Enter>.

6.3.3 In tmux there is a green bar in place of powerline

In order for tmux bindings to work powerline-config script is required to be present in $PATH. Alternatively
one may define $POWERLINE_CONFIG_COMMAND environment variable pointing to the location of the script. This
variable must be defined prior to launching tmux server and in the environment where server is started from.

6.4 Shell issues

6.4.1 Pipe status segment displays only last value in bash

Make sure that powerline command that sets prompt appears the very first in $PROMPT_COMMAND. To do this
powerline.sh needs to be sourced the very last, after all other users of $PROMPT_COMMAND.

6.3. Tmux/screen-related issues 91

Powerline, Release beta

6.4.2 Bash prompt stopped updating

Make sure that powerline commands appear in $PROMPT_COMMAND: some users of $PROMPT_COMMAND have
a habit of overwriting the value instead of prepending/appending to it. All powerline commands start with
_powerline or powerline, e.g. _powerline_set_prompt.

6.4.3 Bash prompt does not show last exit code

There are two possibilities here:

• You are using default theme in place of default_leftonly. Unlike default_leftonly default
theme was designed for shells with right prompt support (e.g. zsh, tcsh, fish) and status in question is supposed
to be shown on the right side which bash cannot display.

• There is some other user of $PROMPT_COMMAND which prepended to this variable, but did not bother keeping
the exit code. For the best experience powerline must appear first in $PROMPT_COMMAND which may be
achieved by sourcing powerline bindings the last.

Note: Resourcing bash bindings will not resolve the problem unless you clear powerline commands from
$PROMPT_COMMAND first.

6.4.4 When sourcing shell bindings it complains about missing command or file

If you are using pip based installation do not forget to add pip-specific executable path to $PATH environment
variable. This path usually looks something like $HOME/.local/bin (linux) or $HOME/Library/Python/
{python_version}/bin (OS X). One may check out where powerline-config script was installed by using
pip show -f powerline-status | grep powerline-config (does not always work).

6.4.5 I am suffering bad lags before displaying shell prompt

To get rid of these lags there currently are two options:

• Run powerline-daemon. Powerline does not automatically start it for you. See installation instructions for
more details.

• Compile and install libzpython module that lives in https://bitbucket.org/ZyX_I/zpython. This variant is
zsh-specific.

• If you are a python package manager, be sure to set POWERLINE_COMMAND to your Powerline command. See
installation instructions for details.

6.4.6 Prompt is spoiled after completing files in ksh

This is exactly why powerline has official mksh support, but not official ksh support. If you know the solution feel
free to share it in powerline bug tracker30.

30 https://github.com/powerline/powerline

92 Chapter 6. Troubleshooting

https://bitbucket.org/ZyX_I/zpython
https://github.com/powerline/powerline

Powerline, Release beta

6.4.7 When using z powerline shows wrong number of jobs

This happens because z31 is launching some jobs in the background from $POWERLINE_COMMAND and these jobs
fail to finish before powerline prompt is run.

Solution to this problem is simple: be sure that z.sh is sourced strictly after powerline/bindings/bash/
powerline.sh. This way background jobs are spawned by z32 after powerline has done its job.

6.4.8 When using shell I do not see powerline fancy characters

If your locale encoding is not unicode (any encoding that starts with “utf” or “ucs” will work, case is ignored) powerline
falls back to ascii-only theme. You should set up your system to use unicode locale or forget about powerline fancy
characters.

6.4.9 Urxvt unicode3 and frills

Make sure that, whatever urxvt package you’re installing, both the unicode3 and frills features are enabled at compile
time. Run urxvt --help 2>&1 | grep options: to get a list of enabled options. This should contain at
least frills, unicode3 and optionally iso14755 if you want to input Unicode characters as well.

Compiler flags example:

–enable-frills –enable-unicode3

As long as your terminal emulator is compiled without unicode rendering, no amount of configuration will make it
display unicode characters. They’re being considered ‘unnecessary features’, but they add negligible overhead to the
size of the installed package (~100KB).

6.5 Vim issues

6.5.1 My vim statusline has strange characters like ^B in it!

• Please add set encoding=utf-8 to your vimrc.

6.5.2 My vim statusline has a lot of ^ or underline characters in it!

• You need to configure the fillchars setting to disable statusline fillchars (see :h 'fillchars' for de-
tails). Add this to your vimrc to solve this issue:

set fillchars+=stl:\ ,stlnc:\

6.5.3 My vim statusline is hidden/only appears in split windows!

• Make sure that you have set laststatus=2 in your vimrc.

31 https://github.com/rupa/z
32 https://github.com/rupa/z

6.5. Vim issues 93

https://github.com/rupa/z
https://github.com/rupa/z

Powerline, Release beta

6.5.4 My vim statusline is not displayed completely and has too much spaces

• Be sure you have ambiwidth option set to single.

• Alternative: set ambiwidth to 2, remove fancy dividers (they suck when ambiwidth is set to double).

6.5.5 Powerline loses color after editing vimrc

If your vimrc has something like

autocmd! BufWritePost ~/.vimrc :source ~/.vimrc

used to automatically source vimrc after saving it then you must add nested after pattern (vimrc in this case):

autocmd! BufWritePost ~/.vimrc nested :source ~/.vimrc

. Alternatively move :colorscheme command out of the vimrc to the file which will not be automatically resourced.

Observed problem is that when you use :colorscheme command existing highlighting groups are usually cleared,
including those defined by powerline. To workaround this issue powerline hooks Colorscheme event, but when you
source vimrc with BufWritePost (or any other) event, but without nested this event is not launched. See also
autocmd-nested33 Vim documentation.

6.5.6 Powerline loses color after saving any file

It may be one of the incarnations of the above issue: specifically minibufexpl is known to trigger it. If you are using
minibufexplorer you should set

let g:miniBufExplForceSyntaxEnable = 1

variable so that this issue is not triggered. Complete explanation:

1. When MBE autocommand is executed it launches :syntax enable Vim command. . .

2. . . . which makes Vim source syntax/syntax.vim file . . .

3. . . . which in turn sources syntax/synload.vim . . .

4. . . . which executes :colorscheme command. Normally this command triggers Colorscheme event, but
in the first point minibufexplorer did set up autocommands that miss nested attribute meaning that no events
will be triggered when processing MBE events.

Note: This setting was introduced in version 6.3.1 of minibufexpl34 and removed in version 6.5.0 of its successor
minibufexplorer35. It is highly advised to use the latter because minibufexpl36 was last updated late in 2004.

33 http://vimcommunity.bitbucket.org/doc/autocmd.txt.html#autocmd-nested
34 http://www.vim.org/scripts/script.php?script_id=159
35 http://www.vim.org/scripts/script.php?script_id=3239
36 http://www.vim.org/scripts/script.php?script_id=159

94 Chapter 6. Troubleshooting

http://vimcommunity.bitbucket.org/doc/autocmd.txt.html#autocmd-nested
http://www.vim.org/scripts/script.php?script_id=159
http://www.vim.org/scripts/script.php?script_id=3239
http://www.vim.org/scripts/script.php?script_id=159

CHAPTER 7

Tips and tricks

7.1 Vim

7.1.1 Useful settings

You may find the following vim settings useful when using the Powerline statusline:

set laststatus=2 " Always display the statusline in all windows
set showtabline=2 " Always display the tabline, even if there is only one tab
set noshowmode " Hide the default mode text (e.g. -- INSERT -- below the statusline)

7.2 VS-Code

7.2.1 Useful settings

To make powerline work in the internal terminal, add the following settings; where the shell command needs to be
adjusted according to your preferred shell.

"terminal.integrated.shell.linux": "/bin/bash"
"terminal.integrated.inheritEnv": true

7.3 Rxvt-unicode

7.3.1 Terminus font and urxvt

The Terminus fonts does not have the powerline glyphs and unless someone submits a patch to the font author, it is
unlikely to happen. However, Andre Klärner came up with this work around: In your ~/.Xdefault file add the
following:

95

Powerline, Release beta

urxvt*font: xft:Terminus:pixelsize=12,xft:Inconsolata\ for\ Powerline:pixelsize=12

This will allow urxvt to fallback onto the Inconsolata fonts in case it does not find the right glyphs within the terminus
font.

7.3.2 Source Code Pro font and urxvt

Much like the terminus font that was mentioned above, a similar fix can be applied to the Source Code Pro fonts.

In the ~/.Xdefaults add the following:

URxvt*font: xft:Source\ Code\ Pro\ Medium:pixelsize=13:antialias=true:hinting=true,
→˓xft:Source\ Code\ Pro\ Medium:pixelsize=13:antialias=true:hinting=true

I noticed that Source Code Pro has the glyphs there already, but the pixel size of the fonts play a role in whether or
not the > or the < separators showing up or not. Using font size 12, glyphs on the right hand side of the powerline are
present, but the ones on the left don’t. Pixel size 14, brings the reverse problem. Font size 13 seems to work just fine.

7.4 Reloading powerline after update

Once you have updated powerline you generally have the following options:

1. Restart the application you are using it in. This is the safest one. Will not work if the application uses
powerline-daemon.

2. For shell and tmux bindings (except for zsh with libzpython): do not do anything if you do not use
powerline-daemon, run powerline-daemon --replace if you do.

3. Use powerline reloading feature.

Warning: This feature is an unsafe one. It is not guaranteed to work always, it may render your
Python constantly error out in place of displaying powerline and sometimes may render your
application useless, forcing you to restart.

Do not report any bugs occurred when using this feature unless you know both what caused it
and how this can be fixed.

• When using zsh with libzpython use

powerline-reload

Note: This shell function is only defined when using libzpython.

• When using IPython use

%powerline reload

• When using Vim use

py powerline.reload()
" or (depending on Python version you are using)
py3 powerline.reload()

96 Chapter 7. Tips and tricks

CHAPTER 8

License and credits

Powerline is licensed under the MIT license37.

8.1 Authors

• Kim Silkebækken38

• Nikolay Pavlov39

• Kovid Goyal40

• Philip Wellnitz41

8.2 Contributors

• List of contributors42

• The glyphs in the font patcher are created by Fabrizio Schiavi, creator of the excellent coding font Pragmata
Pro43.

37 https://raw.github.com/powerline/powerline/develop/LICENSE
38 https://github.com/Lokaltog
39 https://github.com/ZyX-I
40 https://github.com/kovidgoyal
41 https://github.com/ph111p
42 https://github.com/powerline/powerline/contributors
43 http://www.fsd.it/fonts/pragmatapro.htm

97

https://raw.github.com/powerline/powerline/develop/LICENSE
https://github.com/Lokaltog
https://github.com/ZyX-I
https://github.com/kovidgoyal
https://github.com/ph111p
https://github.com/powerline/powerline/contributors
http://www.fsd.it/fonts/pragmatapro.htm
http://www.fsd.it/fonts/pragmatapro.htm

Powerline, Release beta

98 Chapter 8. License and credits

CHAPTER 9

Powerline shell commands’ manual pages

9.1 powerline-config manual page

9.1.1 Synopsis

powerline-config [-pPATH]... tmux ACTION ([-s |n)]
powerline-config [-pPATH]... shell ACTION [COMPONENT] [-sSHELL]

9.1.2 Description

-p, –config-path PATH Path to configuration directory. If it is present then configuration files will only be sought in
the provided path. May be provided multiple times to search in a list of directories.

-h, –help Display help and exit.

Arguments specific to tmux subcommand

ACTION If action is source then version-specific tmux configuration files are sourced, if it is setenv then special
(prefixed with _POWERLINE) tmux global environment variables are filled with data from powerline configu-
ration. Action setup is just doing setenv then source.

-s, –source When using setup: always use configuration file sourcing. By default this is determined automatically
based on tmux version: this is the default for tmux 1.8 and below.

-n, –no-source When using setup: in place of sourcing directly execute configuration files. That is, read each
needed powerline-specific configuration file, substitute $_POWERLINE_... variables with appropriate values
and run tmux config line. This is the default behaviour for tmux 1.9 and above.

-h, –help Display help and exit.

99

Powerline, Release beta

Arguments specific to shell subcommand

ACTION If action is command then preferred powerline command is output, if it is uses then powerline-config
script will exit with 1 if specified component is disabled and 0 otherwise.

COMPONENT Only applicable for uses subcommand: makes powerline-config exit with 0 if specific com-
ponent is enabled and with 1 otherwise. tmux component stands for tmux bindings (e.g. those that notify tmux
about current directory changes), prompt component stands for shell prompt.

-s, –shell SHELL Shell for which query is run

-h, –help Display help and exit.

9.1.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal, Philip Wellnitz and contributors. The glyphs in the font
patcher are created by Fabrizio Schiavi.

9.1.4 Reporting bugs

Report powerline-config bugs to https://github.com/powerline/powerline/issues.

9.1.5 See also

powerline(1)

9.2 powerline-daemon manual page

9.2.1 Synopsis

powerline-daemon [--quiet] [--socket=S] ([--kill] | (
[--foreground] | [--replace]))

9.2.2 Description

–quiet, -q Without other options: do not complain about already running powerline-daemon instance. Will still exit
with 1. With --kill and --replace: do not show any messages. With --foreground: ignored. Does
not silence exceptions in any case.

–socket, -s S Specify socket which will be used for connecting to daemon.

–kill, -k Kill an already running instance.

–foreground, -f Run in the foreground (don’t daemonize).

–replace, -r Replace an already running instance.

-h, –help Display help and exit.

100 Chapter 9. Powerline shell commands’ manual pages

https://github.com/powerline/powerline/issues

Powerline, Release beta

9.2.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal, Philip Wellnitz and contributors. The glyphs in the font
patcher are created by Fabrizio Schiavi.

9.2.4 Reporting bugs

Report powerline-daemon bugs to https://github.com/powerline/powerline/issues.

9.2.5 See also

powerline(1)

9.3 powerline-lint manual page

9.3.1 Synopsis

powerline-lint [-pPATH]... [-d]

9.3.2 Description

-p, –config-path PATH Paths where configuration should be checked, in order. You must supply all paths necessary
for powerline to work, checking partial (e.g. only user overrides) configuration is not supported.

-d, –debug Display additional information. Used for debugging powerline-lint itself, not for debugging con-
figuration.

-h, –help Display help and exit.

9.3.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal, Philip Wellnitz and contributors. The glyphs in the font
patcher are created by Fabrizio Schiavi.

9.3.4 Reporting bugs

Report powerline-lint bugs to https://github.com/powerline/powerline/issues.

9.3.5 See also

powerline(1), powerline-config(1)

9.3. powerline-lint manual page 101

https://github.com/powerline/powerline/issues
https://github.com/powerline/powerline/issues

Powerline, Release beta

9.4 powerline manual page

9.4.1 Synopsis

powerline EXT [SIDE] [-rMODULE] [-wWIDTH] [--last-exit-code=INT]
[--last-pipe-status=LIST] [--jobnum=INT]
[-cKEY.KEY=VALUE]... [-tTHEME.KEY.KEY=VALUE]... [-RKEY=VAL]...
[-pPATH]... [--socket=ADDRESS]

9.4.2 Description

EXT Extension: application for which powerline command is launched (usually shell or tmux). Also supports
wm. extensions: wm.awesome.

SIDE Side: left and right represent left and right side respectively, above emits lines that are supposed to be
printed just above the prompt and aboveleft is like concatenating above with left with the exception that
only one Python instance is used in this case. May be omitted for wm.* extensions.

-r, –renderer-module MODULE Renderer module. Usually something like .bash or .zsh (with leading dot)
which is powerline.renderers.{ext}{MODULE}, may also be full module name (must contain at least
one dot or end with a dot in case it is top-level module) or powerline.renderers submodule (in case there
are no dots).

-w, –width WIDTH Maximum prompt with. Triggers truncation of some segments.

–last-exit-code INT Last exit code.

–last-pipe-status LIST Like above, but is supposed to contain space-separated array of statuses, representing exit
statuses of commands in one pipe.

–jobnum INT Number of jobs.

-c, –config-override KEY.KEY=VALUE Configuration overrides for config.json. Is translated to a dictionary
and merged with the dictionary obtained from actual JSON configuration: KEY.KEY=VALUE is translated to
{"KEY": {"KEY": VALUE}} and then merged recursively. VALUE may be any JSON value, values
that are not null, true, false, start with digit, {, [are treated like strings. If VALUE is omitted then
corresponding key is removed.

-t, –theme-override THEME.KEY.KEY=VALUE Like above, but theme-specific. THEME should point to an exist-
ing and used theme to have any effect, but it is fine to use any theme here.

-R, –renderer-arg KEY=VAL Like above, but provides argument for renderer. Is supposed to be used only by shell
bindings to provide various data like last-exit-code or last-pipe-status (they are not using --renderer-arg
for historical resons: --renderer-arg was added later).

-p, –config-path PATH Path to configuration directory. If it is present then configuration files will only be seeked in
the provided path. May be provided multiple times to search in a list of directories.

–socket ADDRESS Socket address to use in daemon clients. Is always UNIX domain socket on linux and file socket
on Mac OS X. Not used here, present only for compatibility with other powerline clients. This argument must
always be the first one and be in a form --socket ADDRESS: no = or short form allowed (in other powerline
clients, not here).

-h, –help Display help and exit.

102 Chapter 9. Powerline shell commands’ manual pages

Powerline, Release beta

9.4.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal, Philip Wellnitz and contributors. The glyphs in the font
patcher are created by Fabrizio Schiavi.

9.4.4 Reporting bugs

Report powerline bugs to https://github.com/powerline/powerline/issues.

9.4.5 See also

powerline-daemon(1), powerline-config(1)

9.4. powerline manual page 103

https://github.com/powerline/powerline/issues

Powerline, Release beta

104 Chapter 9. Powerline shell commands’ manual pages

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

105

Powerline, Release beta

106 Chapter 10. Indices and tables

Python Module Index

p
powerline.listers.i3wm, 65
powerline.listers.pdb, 65
powerline.listers.vim, 65
powerline.segments.common.appoints, 38
powerline.segments.common.bat, 35
powerline.segments.common.bluetooth, 33
powerline.segments.common.env, 33
powerline.segments.common.generic, 51
powerline.segments.common.mail, 37
powerline.segments.common.net, 30
powerline.segments.common.players, 39
powerline.segments.common.sys, 28
powerline.segments.common.time, 36
powerline.segments.common.vcs, 28
powerline.segments.common.volume, 51
powerline.segments.common.wthr, 35
powerline.segments.i3wm, 52
powerline.segments.pdb, 54
powerline.segments.randr, 55
powerline.segments.shell, 57
powerline.segments.tmux, 58
powerline.segments.vim, 59
powerline.segments.vim.plugin.ale, 63
powerline.segments.vim.plugin.capslock,

64
powerline.segments.vim.plugin.commandt,

64
powerline.segments.vim.plugin.nerdtree,

64
powerline.segments.vim.plugin.syntastic,

63
powerline.segments.vim.plugin.tagbar,

64
powerline.selectors, 66
powerline.selectors.common, 66
powerline.selectors.i3wm, 66
powerline.selectors.vim, 67

107

Powerline, Release beta

108 Python Module Index

Index

A
active_window() (in module power-

line.segments.i3wm), 52
additional_args() (powerline.segments.Segment

static method), 77
ale() (in module powerline.segments.vim.plugin.ale),

63
all_of() (in module powerline.selectors), 66
any_of() (in module powerline.selectors), 66
argspecobjs() (power-

line.segments.common.env.CwdSegment
method), 33

argspecobjs() (power-
line.segments.common.players.PlayerSegment
method), 39

argspecobjs() (power-
line.segments.common.vcs.VCSInfoSegment
method), 28

argspecobjs() (powerline.segments.Segment
method), 77

attached_clients() (in module power-
line.segments.tmux), 58

B
battery() (in module power-

line.segments.common.bat), 35
bluetooth() (in module power-

line.segments.common.bluetooth), 33
bufferlister() (in module powerline.listers.vim),

65
bufnr() (in module powerline.segments.vim), 59

C
capslock_indicator() (in module power-

line.segments.vim.plugin.capslock), 64
channel_empty() (in module power-

line.selectors.i3wm), 66
channel_full() (in module power-

line.selectors.i3wm), 67

channel_has_value() (in module power-
line.selectors.i3wm), 67

clementine() (in module power-
line.segments.common.players), 40

ClementinePlayerSegment (class in power-
line.segments.common.players), 39

click_status() (in module power-
line.segments.common.generic), 51

clip() (in module powerline.segments.common.env),
33

cmus() (in module power-
line.segments.common.players), 41

CmusPlayerSegment (class in power-
line.segments.common.players), 39

col_current() (in module powerline.segments.vim),
59

continuation() (in module power-
line.segments.shell), 57

cpu_load_percent() (in module power-
line.segments.common.sys), 28

CPULoadPercentSegment (class in power-
line.segments.common.sys), 28

create_logger() (powerline.Powerline method), 80
create_renderer() (powerline.Powerline method),

80
critical() (powerline.PowerlineLogger method), 78
csv_col_current() (in module power-

line.segments.vim), 59
current_code_name() (in module power-

line.segments.pdb), 54
current_context() (in module power-

line.segments.pdb), 54
current_file() (in module power-

line.segments.pdb), 54
current_line() (in module power-

line.segments.pdb), 54
current_tag() (in module power-

line.segments.vim.plugin.tagbar), 64
cwd() (in module powerline.segments.common.env), 34
cwd() (in module powerline.segments.shell), 57

109

Powerline, Release beta

CwdSegment (class in power-
line.segments.common.env), 33

D
date() (in module powerline.segments.common.time),

36
dbus_player() (in module power-

line.segments.common.players), 42
DbusPlayerSegment (class in power-

line.segments.common.players), 39
debug() (powerline.PowerlineLogger method), 78
do_force_update() (powerline.renderer.Renderer

method), 83
do_render() (powerline.renderer.Renderer method),

83
do_setup() (powerline.Powerline static method), 81

E
email_imap_alert() (in module power-

line.segments.common.mail), 37
EmailIMAPSegment (class in power-

line.segments.common.mail), 37
environment() (in module power-

line.segments.common.env), 34
error() (powerline.PowerlineLogger method), 78
escape() (powerline.renderer.Renderer method), 83
exception() (powerline.PowerlineLogger method),

78
external_ip() (in module power-

line.segments.common.net), 30
ExternalIpSegment (class in power-

line.segments.common.net), 30

F
file_bom() (in module powerline.segments.vim), 59
file_directory() (in module power-

line.segments.vim), 59
file_encoding() (in module power-

line.segments.vim), 59
file_format() (in module powerline.segments.vim),

59
file_name() (in module powerline.segments.vim), 60
file_scheme() (in module powerline.segments.vim),

60
file_size() (in module powerline.segments.vim), 60
file_type() (in module powerline.segments.vim), 60
finder() (in module power-

line.segments.vim.plugin.commandt), 64
force_update() (powerline.Powerline method), 81
force_update() (powerline.renderer.Renderer

method), 83
frame_lister() (in module powerline.listers.pdb),

65

fuzzy_time() (in module power-
line.segments.common.time), 36

G
gcalendar() (in module power-

line.segments.common.appoints), 38
generic_growable() (in module power-

line.segments.common.generic), 52
generic_shell() (in module power-

line.segments.common.generic), 52
get_config_paths() (powerline.Powerline static

method), 81
get_encoding() (powerline.Powerline static

method), 81
get_local_themes() (powerline.Powerline static

method), 81
get_player_status() (power-

line.segments.common.players.CmusPlayerSegment
method), 39

get_player_status() (power-
line.segments.common.players.MocPlayerSegment
method), 39

get_segment_info() (powerline.renderer.Renderer
method), 83

get_theme() (powerline.renderer.Renderer method),
83

GoogleCalendarSegment (class in power-
line.segments.common.appoints), 38

H
hl() (powerline.renderer.Renderer method), 84
hl_join() (powerline.renderer.Renderer static

method), 84
hlstyle() (powerline.renderer.Renderer method), 84
hostname() (in module power-

line.segments.common.net), 30

I
info() (powerline.PowerlineLogger method), 78
init() (powerline.Powerline method), 81
internal_ip() (in module power-

line.segments.common.net), 31
itunes() (in module power-

line.segments.common.players), 43
ITunesPlayerSegment (class in power-

line.segments.common.players), 39

J
jobnum() (in module powerline.segments.shell), 58

L
last_pipe_status() (in module power-

line.segments.shell), 58

110 Index

Powerline, Release beta

last_status() (in module power-
line.segments.shell), 58

line_count() (in module powerline.segments.vim),
60

line_current() (in module power-
line.segments.vim), 60

line_percent() (in module power-
line.segments.vim), 60

load_colors_config() (powerline.Powerline
method), 81

load_colorscheme_config() (power-
line.Powerline method), 81

load_config() (powerline.Powerline method), 82
load_main_config() (powerline.Powerline

method), 82
load_theme_config() (powerline.Powerline

method), 82

M
memory_usage() (in module power-

line.segments.common.sys), 29
mocp() (in module power-

line.segments.common.players), 44
MocPlayerSegment (class in power-

line.segments.common.players), 39
mode() (in module powerline.segments.i3wm), 53
mode() (in module powerline.segments.shell), 58
mode() (in module powerline.segments.vim), 60
mode() (in module powerline.selectors), 66
modified_buffers() (in module power-

line.segments.vim), 61
modified_indicator() (in module power-

line.segments.vim), 61
mpd() (in module powerline.segments.common.players),

45
MpdPlayerSegment (class in power-

line.segments.common.players), 39

N
nerdtree() (in module power-

line.segments.vim.plugin.nerdtree), 64
network_load() (in module power-

line.segments.common.net), 31
network_manager() (in module power-

line.segments.common.net), 32
NetworkLoadSegment (class in power-

line.segments.common.net), 30
NetworkManagerSegment (class in power-

line.segments.common.net), 30

O
omitted_args() (power-

line.segments.common.env.CwdSegment
method), 33

omitted_args() (power-
line.segments.common.players.PlayerSegment
method), 39

omitted_args() (power-
line.segments.common.vcs.VCSInfoSegment
method), 28

omitted_args() (powerline.segments.Segment
method), 77

output() (in module powerline.segments.randr), 55
output() (in module powerline.selectors.i3wm), 67
output_lister() (in module power-

line.listers.i3wm), 65
OutputSegment (class in powerline.segments.randr),

55

P
paste_indicator() (in module power-

line.segments.vim), 61
path() (in module power-

line.segments.vim.plugin.commandt), 64
PlayerSegment (class in power-

line.segments.common.players), 39
position() (in module powerline.segments.vim), 61
Powerline (class in powerline), 80
powerline.listers.i3wm (module), 65
powerline.listers.pdb (module), 65
powerline.listers.vim (module), 65
powerline.segments.common.appoints (mod-

ule), 38
powerline.segments.common.bat (module), 35
powerline.segments.common.bluetooth

(module), 33
powerline.segments.common.env (module), 33
powerline.segments.common.generic (mod-

ule), 51
powerline.segments.common.mail (module),

37
powerline.segments.common.net (module), 30
powerline.segments.common.players (mod-

ule), 39
powerline.segments.common.sys (module), 28
powerline.segments.common.time (module),

36
powerline.segments.common.vcs (module), 28
powerline.segments.common.volume (mod-

ule), 51
powerline.segments.common.wthr (module),

35
powerline.segments.i3wm (module), 52
powerline.segments.pdb (module), 54
powerline.segments.randr (module), 55
powerline.segments.shell (module), 57
powerline.segments.tmux (module), 58
powerline.segments.vim (module), 59

Index 111

Powerline, Release beta

powerline.segments.vim.plugin.ale (mod-
ule), 63

powerline.segments.vim.plugin.capslock
(module), 64

powerline.segments.vim.plugin.commandt
(module), 64

powerline.segments.vim.plugin.nerdtree
(module), 64

powerline.segments.vim.plugin.syntastic
(module), 63

powerline.segments.vim.plugin.tagbar
(module), 64

powerline.selectors (module), 66
powerline.selectors.common (module), 66
powerline.selectors.i3wm (module), 66
powerline.selectors.vim (module), 67
PowerlineLogger (class in powerline), 77

R
rdio() (in module power-

line.segments.common.players), 46
RDIOPlayerSegment (class in power-

line.segments.common.players), 39
readonly_indicator() (in module power-

line.segments.vim), 61
reload() (powerline.Powerline method), 82
render() (powerline.Powerline method), 82
render() (powerline.renderer.Renderer method), 84
render_above_lines() (powerline.Powerline

method), 82
render_above_lines() (power-

line.renderer.Renderer method), 84
Renderer (class in powerline.renderer), 83
rhythmbox() (in module power-

line.segments.common.players), 47
RhythmboxPlayerSegment (class in power-

line.segments.common.players), 40

S
scratchpad() (in module powerline.segments.i3wm),

53
ScreenRotationSegment (class in power-

line.segments.randr), 55
Segment (class in powerline.segments), 77
segment_info (powerline.renderer.Renderer at-

tribute), 85
setup() (powerline.Powerline method), 82
setup_components() (powerline.Powerline

method), 82
ShellCwdSegment (class in power-

line.segments.shell), 57
shutdown() (powerline.Powerline method), 82
shutdown() (powerline.renderer.Renderer method), 85

single_tab() (in module powerline.selectors.vim),
67

spotify() (in module power-
line.segments.common.players), 48

spotify_apple_script() (in module power-
line.segments.common.players), 49

spotify_dbus() (in module power-
line.segments.common.players), 50

SpotifyAppleScriptPlayerSegment (class in
powerline.segments.common.players), 40

SpotifyDbusPlayerSegment (class in power-
line.segments.common.players), 40

srot() (in module powerline.segments.randr), 55
stack_depth() (in module powerline.segments.pdb),

54
strwidth() (powerline.renderer.Renderer method), 85
syntastic() (in module power-

line.segments.vim.plugin.syntastic), 63
system_load() (in module power-

line.segments.common.sys), 29

T
tab() (in module powerline.segments.vim), 61
tab_modified_indicator() (in module power-

line.segments.vim), 61
tablister() (in module powerline.listers.vim), 65
tabnr() (in module powerline.segments.vim), 61
temp() (in module powerline.segments.common.sys), 30
time() (in module powerline.selectors.common), 66
trailing_whitespace() (in module power-

line.segments.vim), 61

U
update_renderer() (powerline.Powerline method),

83
uptime() (in module powerline.segments.common.sys),

30
user() (in module powerline.segments.common.env),

34

V
vcsinfo() (in module power-

line.segments.common.vcs), 28
vcsinfo() (in module powerline.segments.vim), 62
VCSInfoSegment (class in power-

line.segments.common.vcs), 28
VimVarHandler (class in powerline.vim), 67
VimVCSInfoSegment (class in power-

line.segments.vim), 59
virtcol_current() (in module power-

line.segments.vim), 62
virtualenv() (in module power-

line.segments.common.env), 34

112 Index

Powerline, Release beta

visual_range() (in module power-
line.segments.vim), 62

vol() (in module powerline.segments.common.volume),
51

W
warn() (powerline.PowerlineLogger method), 78
weather() (in module power-

line.segments.common.wthr), 35
WeatherSegment (class in power-

line.segments.common.wthr), 35
window_title() (in module power-

line.segments.vim), 63
winnr() (in module powerline.segments.vim), 63
wireless() (in module power-

line.segments.common.net), 32
workspace_lister() (in module power-

line.listers.i3wm), 65
workspaces() (in module powerline.segments.i3wm),

53

Index 113

	Overview
	Features
	Screenshots
	Vim statusline

	Installation
	Generic requirements
	Pip installation
	Fonts installation
	Patched fonts

	Installation on various platforms
	Installation on Linux
	Installation on OS X

	Usage
	Application-specific requirements
	Vim plugin requirements
	Shell prompts requirements
	WM widgets requirements
	Terminal emulator requirements

	Plugins
	Shell prompts
	Window manager widgets
	Other plugins

	Configuration and customization
	Quick setup guide
	References
	Configuration reference
	Segment reference
	Lister reference
	Selector functions
	Local configuration overrides

	Developer guide
	Writing segments
	Segment dictionary
	Segments layout
	Segment information used in various extensions
	Segment class
	PowerlineLogger class

	Writing listers
	Local themes
	Vim local themes
	Other local themes

	Creating new powerline extension
	Powerline class
	Renderer class

	Tips and tricks for powerline developers
	Profiling powerline in Vim

	Troubleshooting
	System-specific issues
	Troubleshooting on Linux
	Troubleshooting on OS X

	Common issues
	After an update something stopped working

	Tmux/screen-related issues
	I’m using tmux and Powerline looks like crap, what’s wrong?
	I’m using tmux/screen and Powerline is colorless
	In tmux there is a green bar in place of powerline

	Shell issues
	Pipe status segment displays only last value in bash
	Bash prompt stopped updating
	Bash prompt does not show last exit code
	When sourcing shell bindings it complains about missing command or file
	I am suffering bad lags before displaying shell prompt
	Prompt is spoiled after completing files in ksh
	When using z powerline shows wrong number of jobs
	When using shell I do not see powerline fancy characters
	Urxvt unicode3 and frills

	Vim issues
	My vim statusline has strange characters like ^B in it!
	My vim statusline has a lot of ^ or underline characters in it!
	My vim statusline is hidden/only appears in split windows!
	My vim statusline is not displayed completely and has too much spaces
	Powerline loses color after editing vimrc
	Powerline loses color after saving any file

	Tips and tricks
	Vim
	Useful settings

	VS-Code
	Useful settings

	Rxvt-unicode
	Terminus font and urxvt
	Source Code Pro font and urxvt

	Reloading powerline after update

	License and credits
	Authors
	Contributors

	Powerline shell commands’ manual pages
	powerline-config manual page
	Synopsis
	Description
	Author
	Reporting bugs
	See also

	powerline-daemon manual page
	Synopsis
	Description
	Author
	Reporting bugs
	See also

	powerline-lint manual page
	Synopsis
	Description
	Author
	Reporting bugs
	See also

	powerline manual page
	Synopsis
	Description
	Author
	Reporting bugs
	See also

	Indices and tables
	Python Module Index
	Index

